matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenAbschätzung unklar
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Abschätzung unklar
Abschätzung unklar < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abschätzung unklar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:53 Mi 12.12.2007
Autor: abi2007LK

Hallo nochmal,

sorry - momentan "nerve" ich euch recht viel - aber mit den Folgen/Reihen habe ich halt so meine Probleme - ich arbeite allerdings daran :)

Es sei [mm] (a_{n})_{n \in \IN} [/mm] eine Folge, die gegen ein a [mm] \in \IR [/mm] konvergiere. Man beweise, dass dann die Folge [mm] (b_{n})_{n \in \IN} [/mm] definiert durch

[mm] b_{n} [/mm] := [mm] \frac{1}{n+1}(a_{0} [/mm] + [mm] a_{1} [/mm] + ... + [mm] a_{n}) [/mm] für alle n [mm] \in \IN [/mm]

ebenfalls gegen a konvergiere.

Die Musterlösung sieht so aus:

Wir behandeln zunchst den Fall, dass der Grenzwert a der Folge [mm] (a_{n})_{n \in \IN} [/mm] gleich 0 ist.

Sei [mm] \varepsilon [/mm] > 0 beliebig gegeben, Dann gibt es ein M [mm] \in \IN, [/mm] so dass

[mm] |a_{n}| [/mm] < [mm] \frac{\varepsilon}{2} [/mm] für alle n [mm] \ge [/mm] M

Wir setzen

c := [mm] a_{0} [/mm] + [mm] a_{1} [/mm] + ... + [mm] a_{M} [/mm]

dann gilt für alle n > M

[mm] |b_{n}| [/mm] = [mm] \frac{1}{n+1} [/mm] |c + [mm] a_{M+1} [/mm] + ... + [mm] a_{n}| [/mm] < [mm] \frac{1}{n+1} [/mm] |c| + [mm] \frac{n-M}{n+1}\frac{\varepsilon}{2} [/mm]

Der Beweis geht noch weiter - aber den letzten Schritt verstehe ich nicht. c "beinhaltet" ja alle Glieder von [mm] a_{n}, [/mm] die kleiner als [mm] \frac{\varepsilon}{2} [/mm] sind - aber wie kommt man da auf diese Abschätzung?


        
Bezug
Abschätzung unklar: Antwort
Status: (Antwort) fertig Status 
Datum: 20:59 Mi 12.12.2007
Autor: piet.t


> Hallo nochmal,
>  
> sorry - momentan "nerve" ich euch recht viel - aber mit den
> Folgen/Reihen habe ich halt so meine Probleme - ich arbeite
> allerdings daran :)

Kein Problem, dafür sind wir ja da....;-)

>  
> Es sei [mm](a_{n})_{n \in \IN}[/mm] eine Folge, die gegen ein a [mm]\in \IR[/mm]
> konvergiere. Man beweise, dass dann die Folge [mm](b_{n})_{n \in \IN}[/mm]
> definiert durch
>  
> [mm]b_{n}[/mm] := [mm]\frac{1}{n+1}(a_{0}[/mm] + [mm]a_{1}[/mm] + ... + [mm]a_{n})[/mm] für
> alle n [mm]\in \IN[/mm]
>  
> ebenfalls gegen a konvergiere.
>  
> Die Musterlösung sieht so aus:
>  
> Wir behandeln zunchst den Fall, dass der Grenzwert a der
> Folge [mm](a_{n})_{n \in \IN}[/mm] gleich 0 ist.
>  
> Sei [mm]\varepsilon[/mm] > 0 beliebig gegeben, Dann gibt es ein M
> [mm]\in \IN,[/mm] so dass
>  
> [mm]|a_{n}|[/mm] < [mm]\frac{\varepsilon}{2}[/mm] für alle n [mm]\ge[/mm] M
>  
> Wir setzen
>  
> c := [mm]a_{0}[/mm] + [mm]a_{1}[/mm] + ... + [mm]a_{M}[/mm]
>  
> dann gilt für alle n > M
>  
> [mm]|b_{n}|[/mm] = [mm]\frac{1}{n+1}[/mm] |c + [mm]a_{M+1}[/mm] + ... + [mm]a_{n}|[/mm] <
> [mm]\frac{1}{n+1}[/mm] |c| + [mm]\frac{n-M}{n+1}\frac{\varepsilon}{2}[/mm]
>  
> Der Beweis geht noch weiter - aber den letzten Schritt
> verstehe ich nicht.
> c "beinhaltet" ja alle Glieder von
> [mm]a_{n},[/mm] die kleiner als [mm]\frac{\varepsilon}{2}[/mm] sind

Nein, tut es nicht. c ist ja die Summe über den Anfang der Folge [mm] (a_n), [/mm] und das sind ja gerade die Folgenglieder, über die man gar nichts sagen kann. Die könnten beliebig klein aber auch beliebig groß werden. Nachdem wir über die aber gerade nichts sagen können sagen wir einfach, dieser Teil der Summe ist irgend ein c (das natürlich von M abhängt).

> - aber wie kommt man da auf diese Abschätzung?
>  

Gehen wir das nochmal Schritt für Schritt durch:
Zuerst Teilen wir die Summe in zwei Teile: die ersten M+1 Summanden und den Rest:
[mm]\frac{1}{n+1} |a_0 + \ldots + a_M + a_{M+1} + \ldots + a_n| \le \frac{1}{n+1} (|a_0 + \ldots + a_M | + | a_{M+1} + \ldots + a_n| )[/mm]
Das ist ja gerade die Dreiecksungleichung.
Wie oben schon gesagt nennen wir die erste Teilsumme jetzt einfach mal c:
[mm]\frac{1}{n+1} (|a_0 + \ldots + a_M | + | a_{M+1} + \ldots + a_n| )= \frac{1}{n+1} (|c| + | a_{M+1} + \ldots + a_n| )[/mm]
Für die [mm] a_i, [/mm] die wir jetzt noch übrig haben wissen wir aber, dass jedes von ihnen betragsmäßig kleiner als  [mm] \frac{\varepsilon}{2} [/mm] ist. Von denen haben wir aber genau (n-M) Stück, so dass die zweite Hälte der Summe sicher kleiner ist als [mm] $(n-M)\cdot \frac{\varepsilon}{2}$. [/mm] Also insgesamt:
[mm]\frac{1}{n+1} (|c| + | a_{M+1} + \ldots + a_n| )< \frac{1}{n+1} (|c| + (n-M)\cdot \frac{\varepsilon}{2} )[/mm]
So, jetzt noch das [mm] \frac{1}{n+1} [/mm] reinmultiplizieren und schon steht die gewünschte Abschätzung da.

Alles klar?

Gruß

piet

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]