matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieAbschätzungen für Ereignisse
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Wahrscheinlichkeitstheorie" - Abschätzungen für Ereignisse
Abschätzungen für Ereignisse < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abschätzungen für Ereignisse: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:58 Mo 29.04.2013
Autor: f12

Hallo Forum

Ich habe zwei Fragen:

1. Ist es richtig, wenn ich eine Folge von  nicht negativen Z.V. [mm] $(X_n)$ [/mm] habe so dass [mm] $E[X_n]\le [/mm] K$, wobei $K$ eine Konstante ist, unabhängig von $n$. Dann stimmt doch, dass es für jede [mm] $\epsilon [/mm] >0$ gibt es eine Menge $A$ mit [mm] $P(A)>1-\epsilon$ [/mm] und für alle [mm] $\omega\in [/mm] A$ gilt [mm] $0\le X_n(\omega)\le [/mm] K$, richtig? Wobei $X$ eine Z.V. mit [mm] $X_n\to [/mm] X$ in Wahrscheinlichkeit.

2. Wenn ich weiss, dass [mm] $\lim\sup_n P(|X_n-X|> \delta)>\delta$ [/mm] gilt. Kann ich dann folgern mit 1, dass [mm] $\lim\sup_nP(|X_n-X|>\delta, X_n\le K)\ge \delta$, [/mm] wobei ich vielleicht das [mm] $\delta$ [/mm] durch das [mm] \epsilon [/mm] aus $1.)$ austauschen muss?

Danke für die Hilfe

        
Bezug
Abschätzungen für Ereignisse: Antwort
Status: (Antwort) fertig Status 
Datum: 14:15 Mo 29.04.2013
Autor: tobit09

Hallo f12,


> 1. Ist es richtig, wenn ich eine Folge von  nicht negativen
> Z.V. [mm](X_n)[/mm] habe so dass [mm]E[X_n]\le K[/mm], wobei [mm]K[/mm] eine Konstante
> ist, unabhängig von [mm]n[/mm]. Dann stimmt doch, dass es für jede
> [mm]\epsilon >0[/mm] gibt es eine Menge [mm]A[/mm] mit [mm]P(A)>1-\epsilon[/mm] und
> für alle [mm]\omega\in A[/mm] gilt [mm]0\le X_n(\omega)\le K[/mm], richtig?
> Wobei [mm]X[/mm] eine Z.V. mit [mm]X_n\to X[/mm] in Wahrscheinlichkeit.

Das ist Quatsch. Betrachte etwa alle [mm] $X_n=X$, [/mm] $X$ Laplace-verteilt auf [mm] $\{0,2\}$ [/mm] und $K=1$.


Viele Grüße
Tobias

Bezug
                
Bezug
Abschätzungen für Ereignisse: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:19 Mo 29.04.2013
Autor: f12

Grüss dich Tobi

Danke für deine Antwort! Ich war etwas vorschnell mit tippen. Ich weiss zusätzlich, dass [mm] $X_n$ [/mm] beschränkt in Wahrscheinlichkeit sind, d.h. [mm] $\lim_{r\to\infty} \sup_n P(X_n>r)=0$. [/mm] Kann ich daraus 1.) als richtig erachten?

Und was ist mit 2?

Bezug
                        
Bezug
Abschätzungen für Ereignisse: Antwort
Status: (Antwort) fertig Status 
Datum: 14:41 Mo 29.04.2013
Autor: tobit09


> Danke für deine Antwort! Ich war etwas vorschnell mit
> tippen. Ich weiss zusätzlich, dass [mm]X_n[/mm] beschränkt in
> Wahrscheinlichkeit sind, d.h. [mm]\lim_{r\to\infty} \sup_n P(X_n>r)=0[/mm].

Das sind die von mir angegebenen [mm] $X_n$ [/mm] auch.

> Kann ich daraus 1.) als richtig erachten?

Nein.


> Und was ist mit 2?

Wenn die [mm] $X_n$ [/mm] in Wahrscheinlichkeit gegen $X$ konvergieren, ist für alle [mm] $\delta>0$ [/mm]

     [mm] $\lim sup_{n\to\infty}P(|X_n-X|>\delta)=\lim_{n\to\infty}P(|X_n-X|>\delta)=0$. [/mm]

Also kann die Voraussetzung bei 2. sowieso nie eintreten.


Oder sollen die [mm] $X_n$ [/mm] in 2. nicht mehr in Wahrscheinlichkeit gegen $X$ konvergieren? In diesem Fall liste bitte vollständig auf, welche Voraussetzungen du bei 2. annehmen willst.

(Verrate außerdem, was du genau mit [mm] $\delta$ [/mm] durch [mm] $\varepsilon$ [/mm] ersetzen meinst.)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]