matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenAbstände von Vektoren
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Geraden und Ebenen" - Abstände von Vektoren
Abstände von Vektoren < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abstände von Vektoren: Allgemein zu Vektoren
Status: (Frage) beantwortet Status 
Datum: 14:55 Di 26.06.2007
Autor: headbanger

Aufgabe
allgemeine fragen

hi Leute,

ich lerne gerade n bischen Mathe und ich kapiere nicht, wie man den Abstand von 2 Punkten auf einem Vektor ausrechnet.

Und, noch eine Frage zur Winkelberechnung:

es heißt ja: [mm] \overrightarrow{AB}=I\overrightarrow{A}I [/mm] x [mm] I\overrightarrow [/mm] {B} x cos [mm] \alpha [/mm]

das wird dann umgewandelt

[mm] a_{1*}b_{1}+a_{2}*b_{2}+a_{3}*b_{3} [/mm]  geteilt durch (Bruch) [mm] \wurzel{I\vec{a}I + I\vec{b}I} [/mm]

wieso wird das Skalarprodukt hier durch die Vektorenlängen geteilt?

was sagt das skalarprodukt aus?

entschuldigung, wenn ich die frage etwas unübersichtlich gestellt habe, aber ich habe noch etwas schwierigkeiten mit der tech-schreibweise.

mfg

tobi

        
Bezug
Abstände von Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 15:16 Di 26.06.2007
Autor: leduart

Hallo
1. Der Abstand bestimmt sich einfach aus dem Pythagoras, zeichne erst mal 2 Punkte in der Ebene, dann zeichne die Differenz ihrer x- und y- Komponenten ein, du hast ein rechtwinkliges Dreieck.
im Raum ist das entsprechend die "Diagonale" im Quader aus den entsprechenden Komponenten.
zu 2.
wenn du einen Vektor erst mal skalar mit dem Einheitsvektor in x- Richtung multiplizierst, kannst du, wenn du den Vektor (a1,a2) einzeichnest sehen, das [mm] cos\alpha [/mm] zur x- Achse =a1/(Länge des Vektors) ist. also hier [mm] cos\alpha=(1,0)*(a1,a2)/\wurzel{a1^2+a2^2} [/mm]
wenn der Vektor länger wird, aber seine Richtung dieselbe ist natürlich auch der cos derselbe, deshalb, wenn du immer noch jetzt (7,0)*(a1,a2) nimmst musst du auch noch durch den betrag des ersten vektors teilen.
das jetzt auf allgemeine Vektoren anzuwenden geht mir hier zu lang, das stht irgendwo in deinem mathebuch mit ner schönen Zeichnung.
dass der Winkel zwischen 2 Vektoren gleich bleibt, wenn man sie beide irgendwie vergrößert ist aber direkt anschaulich klar. also klar, dass man durch ihre Länge teilen muss.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]