matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesAbstand Punkt-Ebene
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra Sonstiges" - Abstand Punkt-Ebene
Abstand Punkt-Ebene < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abstand Punkt-Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:55 Mo 24.10.2011
Autor: Jennymaus

Aufgabe
(a) Zeigen Sie, dass durch das Gleichungssystem
2x1-x2-3x3=-4
-x1+3x2+4x3=7
eine Gerade g in R³ beschrieben wird, die durch P(1,0,2) verläuft.
(b) Geben Sie eine Darstellung für die Ebene E an, die P enthält und orthogonal zu g ist.
(c) Welchen Abstand hat der Koordinatenursprung von der Ebene E?

Hallo!
Aufgabe (a) habe ich gelöst, indem ich die erste Gleichung zum zweifachen der zweiten Gleichung addiert habe:
5x2+5x3=10 /:5
x2+x3=2    setze x3=t ---> x2=2-t, x1=t-1

g = [mm] \pmat{ -1 \\ 2 \\ 0 }+t \pmat{ 1 \\ -1 \\ 1 } [/mm] =  [mm] \pmat{ 1 \\ 0 \\ 2 } [/mm] für t=2

(b) Vektoren stehen senkrecht aufeinander, wenn das Skalarprodukt=0 ist....wir suchen also zwei Vektoren, für die 1*x-1*y+1*z=0 gilt und erhalten

E= [mm] \pmat{ 1 \\ 0 \\ 2 }+s \pmat{ 1 \\ 1 \\ 0 }+t \pmat{ 0 \\ 1 \\ 1 } [/mm]

Stimmt das bisher so?

Aber wie berechne ich denn den Abstand der Ebene vom P (0,0,0)?

Gruß, Jenny

        
Bezug
Abstand Punkt-Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 12:06 Mo 24.10.2011
Autor: reverend

Hallo Jenny,

> (a) Zeigen Sie, dass durch das Gleichungssystem
>  2x1-x2-3x3=-4
>  -x1+3x2+4x3=7
>  eine Gerade g in R³ beschrieben wird, die durch P(1,0,2)
> verläuft.
>  (b) Geben Sie eine Darstellung für die Ebene E an, die P
> enthält und orthogonal zu g ist.
>  (c) Welchen Abstand hat der Koordinatenursprung von der
> Ebene E?

Verwende doch bitte den Formeleditor oder schreibe direkt x_1 etc, um [mm] x_1 [/mm] zu erhalten. Ebenso bei \IR^3 für [mm] \IR^3. [/mm]
So ist die Darstellung schlecht lesbar, und die ASCII-Hochzahlen werden zudem im Editor (also in Formeln) gar nicht angezeigt.

>  Hallo!
>  Aufgabe (a) habe ich gelöst, indem ich die erste
> Gleichung zum zweifachen der zweiten Gleichung addiert
> habe:
>  5x2+5x3=10 /:5
>  x2+x3=2    setze x3=t ---> x2=2-t, x1=t-1

>  
> g = [mm]\pmat{ -1 \\ 2 \\ 0 }+t \pmat{ 1 \\ -1 \\ 1 }[/mm] =  [mm]\pmat{ 1 \\ 0 \\ 2 }[/mm]

Fast korrekt. [ok] Überflüssig ist der Vektor auf der rechten Seite. Du willst ja erst einmal nur die Geradengleichung angeben.

Erst dann setzt Du so ein wie oben, um t zu ermitteln.

> für t=2

Auch richtig.

> (b) Vektoren stehen senkrecht aufeinander, wenn das
> Skalarprodukt=0 ist....wir suchen also zwei Vektoren, für
> die 1*x-1*y+1*z=0 gilt und erhalten
>  
> E= [mm]\pmat{ 1 \\ 0 \\ 2 }+s \pmat{ 1 \\ 1 \\ 0 }+t \pmat{ 0 \\ 1 \\ 1 }[/mm]
>  
> Stimmt das bisher so?

Ja, auch gut.

> Aber wie berechne ich denn den Abstand der Ebene vom P
> (0,0,0)?

Dazu hättest Du gar keine zwei Richtungsvektoren ermitteln müssen. Verwende den Richtungsvektor der Geraden als Normalenvektor der Ebene und bringe diese in die Hessesche Normal(en)form:

[mm] \vec{n}*\vec{x}-d=0 [/mm]

Wenn |vec{n}|=1 ist (uns so sollte es dann ja sein), dann ist |d| gerade der Abstand der Ebene vom Ursprung.

Grüße
reverend




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]