matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenEinführung Analytische Geometrie (SchuleAbstand Punkt - Gerade
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Einführung Analytische Geometrie (Schule" - Abstand Punkt - Gerade
Abstand Punkt - Gerade < Einführung Analytisc < Schule < Vorkurse < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Einführung Analytische Geometrie (Schule"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abstand Punkt - Gerade: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:49 So 30.11.2014
Autor: Johanna-Laura

Aufgabe
Bestimmen sie den Abstand von p = [mm] (5,3,1)^T [/mm] zu
G: [mm] x_{1}+ x_{2}- x_{3} [/mm] =1
   [mm] x_{1} [/mm]   - [mm] x_{3}= [/mm] 0

Um diese Aufgabe zu lösen habe ich aus G ein inhomogenes lineares Gleichungssystem gebildet: B= [mm] \pmat{ 1 & 1 & -1 | 1\\ 1 & 0 & -1 | 0}. [/mm]
Die Lösung des Gleichungssystem ist dann

L =  [mm] \vektor{t \\1 \\ t} [/mm] t [mm] \in [/mm] R | r [mm] \*\vektor{1 \\0\\ 1} [/mm] + [mm] s\*\vektor{0 \\ 1 \\ 0} [/mm]

diese Gerade möchte ich dann in Koordinatenform umwandeln um über die Hesseform den Abstand berechnen zu können. Hier tritt dann mein Problem auf. Zum Umwandeln setzte ich:
[mm] x_{1 } [/mm] = r + [mm] 0\*s [/mm]
[mm] x_{2} [/mm] = [mm] 0\*r [/mm] + s
[mm] x_{3} [/mm] = r + [mm] 0\*s [/mm]

Wie komme ich nun auf meine Koordinatenform? da ich [mm] x_{2} [/mm] nicht mit den anderen in Verbindung bringen kann? Ich kann ja daraus folgern dass
[mm] x_{1} [/mm] = [mm] x_{3} [/mm] <=> [mm] x_{1} [/mm] - [mm] x_{3} [/mm] = 0

Ist das dann meine Koordinatenform?

Vielen Dank schon mal für eure Hilfe!

        
Bezug
Abstand Punkt - Gerade: Antwort
Status: (Antwort) fertig Status 
Datum: 19:34 So 30.11.2014
Autor: Al-Chwarizmi


> Bestimmen sie den Abstand von p = [mm](5,3,1)^T[/mm] zu
>  G: [mm]x_{1}+ x_{2}- x_{3}[/mm] =1
>     [mm]x_{1}[/mm]   - [mm]x_{3}=[/mm] 0
>  Um diese Aufgabe zu lösen habe ich aus G ein inhomogenes
> lineares Gleichungssystem gebildet: B= [mm]\pmat{ 1 & 1 & -1\ |\ 1\\ 1 & 0 & -1\ |\ 0}.[/mm]
>  
> Die Lösung des Gleichungssystem ist dann
>  
> L =  [mm]\vektor{t \\1 \\ t}\quad t \ \in\ \IR\ \ |\ \ r \ *\vektor{1 \\0\\ 1}\ +\ s\ *\vektor{0 \\ 1 \\ 0}[/mm]     [haee]


Ein einziger Parameter genügt doch !

Geradengleichung:    [mm] $\pmat{x_1 \\x_2 \\ x_3}\ [/mm] =\ [mm] \pmat{t \\1 \\ t}\ [/mm] =\ [mm] \pmat{0\\1\\0}\,+\,t*\pmat{1\\0\\1} [/mm] $


> diese Gerade möchte ich dann in Koordinatenform umwandeln
> um über die Hesseform den Abstand berechnen zu können.    [haee]

Zur Berechnung eines Abstandes  Punkt/Gerade im [mm] \IR^3 [/mm]
ist die Hesseform nicht geeignet ! Falls du diese unbedingt
einsetzen möchtest, könntest du zuerst die beiden Abstände
[mm] d_1 [/mm] und [mm] d_2 [/mm] des Punktes p von den beiden gegebenen Ebenen mittels
Hesse berechnen. Außerdem berechnest du den Winkel [mm] \alpha [/mm]
zwischen den beiden Ebenen (bzw. zwischen ihren
Normalenvektoren). Dann bleibt ein planimetrisches
Problem zu lösen: berechne den Umkreisdurchmesser
eines Dreiecks, von dem zwei Seitenlängen [mm] (d_1 [/mm] und [mm] d_2) [/mm]
und ihr Zwischenwinkel [mm] \alpha [/mm] gegeben sind. Diese
Aufgabe kann man mittels Cosinussatz lösen.

LG ,   Al-Chwarizmi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Einführung Analytische Geometrie (Schule"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 15m 4. fred97
ULinAEw/Eigenwerte und Matrix
Status vor 10h 09m 7. Tobikall
UAnaR1Funk/L Beweis ohne Logarithmusdef.
Status vor 12h 41m 8. leduart
UAnaR1/Reaktion - erwünscht
Status vor 13h 19m 2. Infinit
USons/Punktwolken vergleichen?
Status vor 16h 06m 1. alex1992
UStoc/Beweis Signifikanzniveau
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]