matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesAbstand Punkt - Gerade
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra Sonstiges" - Abstand Punkt - Gerade
Abstand Punkt - Gerade < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abstand Punkt - Gerade: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:07 Di 18.10.2016
Autor: Jura86

Aufgabe
Bestimmen Sie den Abstand von [mm] \vec{x} [/mm] zu L

Guten Tag !

Ich habe hier eine Aufgabe gelöst, und würde gerne jemanden bitte kurz zu schauen ob ich das richtig gemacht habe.



Das sind die gegebenen Werte

[mm] \vec{x} =\begin{pmatrix} -1\\ -5 \\ 4 \end{pmatrix} [/mm]

L:= [mm] \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix} [/mm] + [mm] \mathbb [/mm] R [mm] \begin{pmatrix} 3 \\ -1 \\ -2 \end{pmatrix} [/mm]


Hier habe ich die Gegebenen Werte zu einem Vektor zusammengefasst

[mm] \begin{pmatrix} (2+3\lambda) & -1 \\ (0-1\lambda) & -5 \\ (-1-2\lambda) & 4 \end{pmatrix} [/mm]  =  
[mm] \begin{pmatrix} 1+3\lambda \\ -5-\lambda \\ 3-2\lambda \end{pmatrix} [/mm]


Dann habe ich das Skalarproduckt gebildet und = 0 gesetzt

[mm] \begin{pmatrix} 1+3\lambda \\ -5-\lambda \\ 3-2\lammbda \end{pmatrix} \cdot \begin{pmatrix} -3 \\ -1 \\ -2 \end{pmatrix} [/mm]

Habe nach [mm] \lambda [/mm] aufgelöst und habe
[mm] \lambda [/mm] = -1 raus






Dann habe ich einen Betrag gebildet und - 1 eingesetzt


[mm] \sqrt{(1+3\lambda)^{2} + (-5-\lambda)^{2} + (3-2\lambda)^{2} } [/mm]  = 6



Und als Lösung habe ich


d ( g,P) = 6 L.E


Ist das soweit okay oder ist es völlig falsch ?
Wenn es falsch ist,
kann mir dann jemad die Schritte Zeigen die zum Ergebniss führen ?

Vielen Dank in Voraus!!

        
Bezug
Abstand Punkt - Gerade: Antwort
Status: (Antwort) fertig Status 
Datum: 17:29 Di 18.10.2016
Autor: Steffi21

Hallo,

[mm] \vektor{1+3r \\ -5-r \\ 3-2r}*\vektor{3 \\ -1 \\ -2} [/mm]

hier ist ein Vorzeichenfehler, Du hast -3 stehen

r=-1 ist aber ok

jetzt r=-1 in [mm] \vektor{2+3r \\ -r \\ -1-2r} [/mm] ergibt [mm] \vektor{-1 \\ 1 \\ 1} [/mm]

[mm] \vektor{-1 \\ 1 \\ 1}- \vektor{-1 \\ -5 \\ 4}= \vektor{0 \\ 6 \\ -3} [/mm]

[mm] \wurzel{0^2+6^2+(-3)^2}=\wurzel{45}\approx6,7LE [/mm]

Steffi








Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]