Abstand Schwerpunkt - Eckpunkt < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 13:48 So 07.05.2006 | Autor: | TobiasBe |
Aufgabe | Gegeben sei ein Dreieck mit den Seiten a, b, c und den gegenüberliegenden Eckpunkten A, B, C. Sei [mm] P_{SH} [/mm] der Schnittpunkt der Seitenhalbierenden. Beweisen Sie die folgende Formel für den Abstand dieses Punktes zu den Eckpunkten des Dreiecks:
[mm] |AP_{SH}|² [/mm] = [mm] \bruch{2(b²+c²)-a²}{9} [/mm] |
Ich habe diese Frage noch auf keinem anderen Forum gestellt.
Ich habe versucht, diese Aufgabe zunächst wie folgt für den Abstand zum Eckpunkt A zu lösen:
Als erstes bestimmte ich die Länge der Seitenhalbierenden (ich nenne sie mal [mm] a_{s}), [/mm] welche durch den Eckpunkt A und die Seite a geht, indem ich mit dem Kosinussatz den Winkel [mm] \gamma [/mm] am Eckpunkt C bestimme, und dann diesen mit der Seite b und c/2 wieder in den Kosinussatz einsetze.
Das wäre dann somit:
[mm] a_{s} [/mm] ² = b²+ [mm] \bruch{a²}{4} [/mm] - [mm] a*b*cos\gamma
[/mm]
Der Schnittpunkt der Seitenhalbierenden ist ja auch der Schwerpunkt des Dreiecks, also bewies ich dann noch mit dem Strahlensatz, das dieser das Dreieck in Verhältnis 2:1 schneidet, und bräuchte somit dann nur die obrige Formel mit 2/3 multiplizieren, um die Lösung zu erhalten. Naja, zumindest dachte ich mir das so, aber wie man sieht, es haut nicht hin.
Ich denke mal, dass mein Ansatz in eine völlig falsche Richtung geht, weshalb ich für jede Hilfe um auf den richtigen Weg zu kommen dankbar wäre.
Vielen Dank!
|
|
|
|
Du kannst das Problem elementargeometrisch lösen, in dem du eine Seitenhalbierende in ihrem Seitenmittelpunkt (punkt-)spiegelst, du erhälst ein Parallelogramm. eine Diagonale ist hier die verdoppelte Seitenhalbierende f, die andere diagonale ist a, entsprechend die Seite, die halbiert wurde. Nun gilt in diesem Parallelogramm das Gesetz für die Diagonalen
[mm] a^2 [/mm] + [mm] f^2 [/mm] = [mm] 2(b^2 [/mm] + [mm] c^2) [/mm]
(Kann man zur Not schnell über den S. d. Pythagoras zeigen). also ist
[mm] f= \wurzel{2(b^2 + c^2) - a^2} [/mm]
Diese Diagonalen halbieren sich, also musst du [mm] \left| AP_S_H\right|=f/2= \bruch{\wurzel{2(b^2 + c^2) - a^2}} {2} [/mm]betrachten: dies ist die Länge der seitenhalbierenden, diese noch im Verhältnis 2/3 geteilt, da die seitenhalbierenden sich im Verhältnis 2:1 teilen und das ganze quadriert ergibt deine gesuchte Gleichung. also einfach mal aufmalen, dann sieht man das ganze recht gut.
|
|
|
|