matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenAbstand berechnen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Geraden und Ebenen" - Abstand berechnen
Abstand berechnen < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abstand berechnen: Abstand zweier ebenen
Status: (Frage) beantwortet Status 
Datum: 14:09 So 07.06.2015
Autor: Neverless

Aufgabe
Berechnen Sie den Abstand der beiden parallel Ebenen. E1: x=(-1/1/3)+r*(1/1/-1)+s*(-1/2/0) und E2: x=(4/3/5)+t*(-3/3/1)+k*(5/-4/-2)

Hallo ihr lieben, ich habe diese Aufgabe jetzt mehrmals nachgerechnet bis ich jetzt zum Ergebnis 3,3( also als Abstand) gekommen bin. Leider bin ich mir sehr unsicher, würde mir vllt einer sagen ob mein Ergebnis stimmt?
Lieben gruß


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Abstand berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:26 So 07.06.2015
Autor: MathePower

Hallo Neverless,

> Berechnen Sie den Abstand der beiden parallel Ebenen. E1:
> x=(-1/1/3)+r*(1/1/-1)+s*(-1/2/0) und E2:
> x=(4/3/5)+t*(-3/3/1)+k*(5/-4/-2)
>  Hallo ihr lieben, ich habe diese Aufgabe jetzt mehrmals
> nachgerechnet bis ich jetzt zum Ergebnis 3,3( also als
> Abstand) gekommen bin. Leider bin ich mir sehr unsicher,
> würde mir vllt einer sagen ob mein Ergebnis stimmt?


Das Ergebnis stimt leider nicht.

Poste dazu Deine bisherigen Rechenschritte.


> Lieben gruß
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Gruss
MathePower

Bezug
                
Bezug
Abstand berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:36 So 07.06.2015
Autor: Neverless

Naja, ich habe zuerst eine der Ebenen in eine koordinatenform gewandelt, da kam dann 2x1+x2+3x3=8 heraus. Stimmt das denn soweit?

Bezug
                        
Bezug
Abstand berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:41 So 07.06.2015
Autor: angela.h.b.

Hallo,

ja, das stimmt.

LG Angela

Bezug
                                
Bezug
Abstand berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:59 So 07.06.2015
Autor: Neverless

Dann habe ich eine lotgerade erstellt, die war (-1/1/3)+t*(2/1/3) und dann nur noch den Schnittpunkt berechnet, aber dann kam da 3.3 raus.

Bezug
                                        
Bezug
Abstand berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:19 So 07.06.2015
Autor: MathePower

Hallo Neverless,

> Dann habe ich eine lotgerade erstellt, die war
> (-1/1/3)+t*(2/1/3) und dann nur noch den Schnittpunkt
> berechnet, aber dann kam da 3.3 raus.


Als Stützvektor der Geraden ist der
Stützvektor der jeweiligen anderen Ebene zu wählen.


Gruss
MathePower

Bezug
                                                
Bezug
Abstand berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:32 So 07.06.2015
Autor: Neverless

Okay danke, dann würde bei mir als Abstand 15,9 rauskommen, kann das sein?

Bezug
                                                        
Bezug
Abstand berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:59 So 07.06.2015
Autor: MathePower

Hallo Neverless,

> Okay danke, dann würde bei mir als Abstand 15,9
> rauskommen, kann das sein?


Nein.


Gruss
MathePower

Bezug
                                                                
Bezug
Abstand berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:54 So 07.06.2015
Autor: Neverless

Kannst du mir vllt helfen und sagen wie ich dann weiterreichten muss?

Bezug
                                                                        
Bezug
Abstand berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:49 So 07.06.2015
Autor: MathePower

Hallo Neverless,

> Kannst du mir vllt helfen und sagen wie ich dann
> weiterreichten muss?  

Da Du einen Normalenvektor errechnet hast,
schreiben sich die Ebene wie folgt:

[mm]E_{1}:\left(\vec{x}-\pmat{-1\\ 1 \\ 3}\right)\pmat{2 \\ 1 \\ 3}=0[/mm]

[mm]E_{2}:\left(\vec{x}-\pmat{4\\ 3 \\ 5}\right)\pmat{2 \\ 1 \\ 3}=0[/mm]

Dann wird eine Gerade g gebildet:

[mm]g:\vec{x}=\pmat{4 \\ 3 \\ 5}+u*\pmat{2 \\ 1 \\ 3}[/mm]

Diese Gerade g wird dann in die Ebene [mm]E_{1}[/mm]
eingesetzt und dann das u berechnet.

Damit ist dann [mm]\vmat{u\pmat{2 \\ 1 \\ 3}}[/mm]
der beiden parallelen Ebenen.


Gruss
MathePower

Bezug
                                                                                
Bezug
Abstand berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:52 So 07.06.2015
Autor: Neverless

Vielen Dank, dass hat mir sehr weitergeholfen, jetzt habe ich die anderen Aufgaben dazu auch geschafft! :-)
Wenn ich aber jetzt zwei Ebenen in koordinatenform habe, wie soll ich dann anfangen?

Bezug
                                                                                        
Bezug
Abstand berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:51 Mo 08.06.2015
Autor: Marcel

Hallo,

> Vielen Dank, dass hat mir sehr weitergeholfen, jetzt habe
> ich die anderen Aufgaben dazu auch geschafft! :-)
> Wenn ich aber jetzt zwei Ebenen in koordinatenform habe,
> wie soll ich dann anfangen?  

mach' Dir doch mal eine Skizze. Was man eigentlich machen sollte:

1. Test, ob die beiden Ebenen wirklich parallel sind:
Sie sind genau dann parallel, wenn jeweils ein Normalenvektor der einen
Ebene linear abhängig zu einem der anderen Ebene ist. Hierbei muss ein
Normalenvektor nicht die Länge 1 haben; wenn man auf diese Länge
*normiert*, dann gilt gleiches, die lineare Abhängigkeit bedeutet dann
aber nur noch, dass die Vektoren gleich sind oder gleich bis auf einen
Faktor -1.

Wie bekommt man einen Normalenvektor einer Ebene in Normalenform?
Guckst Du hier:

    []http://de.wikipedia.org/wiki/Normalenvektor#Normale_und_Normalenvektor_einer_Ebene

2. Nimm' einen Punkt [mm] $p_1$, [/mm] der in der einen Ebene liegt, und bilde (mit einem
Normalenvektor d(ies)er Ebene) eine Gerade, die durch diesen Punkt geht
und senkrecht auf die Ebene steht. Berechne den Durchstoßpunkt dieser
Geraden mit der anderen Ebene; dieser möge [mm] $p_2$ [/mm] heißen.

3. Berechne die Länge der Strecke, die durch die beiden Punkte, die eben
genannt worden sind.

Bsp.: Wir haben

    [mm] $E_1:= \{(x,y,z) \mid 3x+4y+5z=7\}$ [/mm]

    [mm] $E_2:=\{(x,y,z) \mid (-3/2)x-2y-(5/2)z=14\}$ [/mm]

Offenbar ist (Link!) [mm] $(3,4,5)^T=\vektor{3\\4\\5}$ [/mm] senkrecht auf [mm] $E_1$ [/mm] - dieser Vektor steht
auch senkrecht auf [mm] $E_2$. [/mm]
(Test: [mm] $(-3/2,-2,-5/2)^T$ [/mm] steht senkrecht auf [mm] $E_2$ [/mm] und es ist [mm] $(3,4,5)^T=-2*(-3/2,-2,-5/2)^T$,) [/mm]

Die Ebenen sind also parallel.

Weiter ist [mm] $(\red{1},\blue{1},\green{0})$ [/mm] wegen

    [mm] $3*\red{1}+4*\blue{1}+5*\green{0}=7$ [/mm]

ein Punkt aus [mm] $E_1$. [/mm]

Wir betrachten nun die Gerade

    [mm] $G:=\left\{(x,y,z) \mid \vektor{x\\y\\z}=\vektor{1\\1\\0}+r*\vektor{3\\4\\5};\;\; r \in \IR\right\}$ [/mm]

Wir berechnen den Schnittpunkt der Geraden G mit [mm] $E_2$; [/mm] also etwa

    (*) $x=1+3r$; $y=1+4r;$ $z=5r$

in

    [mm] $E_2:$ [/mm] $(-3/2)x-2y-(5/2)z=14$

einsetzen und dann nach [mm] $r\,$ [/mm] auflösen:

    $(-3/2)*(1+3r)-2(1+4r)-(5/2)*(5r)=14$

    [mm] $\iff$ [/mm] $-3(1+3r)-4(1+4r)-5*5r=28$

    [mm] $\iff$ [/mm] $-3-9r-4-16r-25r=28$

    [mm] $\iff$ [/mm] $-50r=35$

    [mm] $\iff$ $r=-7/10\,.$ [/mm]

Damit berechnen wir (siehe (*)) den Punkt

    [mm] $\red{(x,y,z)}=(1-21/10, [/mm] 1-28/10, [mm] -35/10)=\red{(-11/10, -18/10, -35/10)}\,.$ [/mm]

Test, dass dieser auch wirklich in [mm] $E_2$ [/mm] liegt:

    $(-3/2)*(-11/10)-2*(-18/10)-(5/2)*(-35/10)=(-3/2)*(-11/10)-(4/2)*(-18/10)-(5/2)*(-35/10)$

    [mm] $=\frac{33+72+175}{20}=\frac{2*140}{2*10}=140/10=14\,.$ [/mm]

Wir brauchen also nur noch die Länge des Vektors

    [mm] $\overrightarrow{\vektor{\red{1}\\\blue{1}\\\green{0}},\red{\vektor{-11/10\\ -18/10\\ -35/10}}}$ [/mm] (zwischen den Vektoren steht ein KOMMA!),

also

    [mm] $d:=\left|\overrightarrow{\vektor{\red{1}\\\blue{1}\\\green{0}},\red{\vektor{-11/10\\ -18/10\\ -35/10}}}\right|$ [/mm]

zu berechnen:

    [mm] $d=|(-11/10-1,\;-18/10-1),\;-35/10-0)|=|(-21/10,\;-28/10,\;-35/10)|=\sqrt{(-21/10)^2+(-28/10)^2+(-35/10)^2}$ [/mm]

    [mm] $=\sqrt{2450}/10\approx [/mm] 4,9497$

P.S. Erinnerung: Oben hatten wir

    [mm] $p_1=(\red{1},\blue{1},\green{0})$ [/mm]

als Punkt aus [mm] $E_1$ [/mm] erkannt und

    [mm] $p_2=\red{(-11/10, -18/10, -35/10)}$ [/mm]

berechnet.

Bezeichnen wir für einen Punkt p=(x,y,z) dann

    [mm] $\overrightarrow{P}=\vektor{x\\y\\z}$ [/mm]

den Vektor vom Nullpunkt zum Punkt p, dann berechnen wir am Ende den
Abstand zwischen [mm] $p_1$ [/mm] und [mm] $p_2$ [/mm] als Länge des Vektors

    [mm] $\overrightarrow{p_1,p_2}=\overrightarrow{P_2}-\overrightarrow{P_1}=\vektor{-11/10\\ -18/10\\ -35/10}-\vektor{\red{1}\\\blue{1}\\\green{0}}=\vektor{-21/10\\-28/10\\-35/10}$ [/mm]

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]