matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLängen, Abstände, WinkelAbstand zweier Geraden
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Längen, Abstände, Winkel" - Abstand zweier Geraden
Abstand zweier Geraden < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abstand zweier Geraden: Tipp
Status: (Frage) beantwortet Status 
Datum: 10:22 Sa 19.01.2013
Autor: judithlein

Hallo,

ich habe hier ein Beispiel für die Berechnung des Abstandes zweier windschiefer Geraden:

Es soll der Abstand zwischen folgenden zwei Geraden berechnet werden:
g: [mm] \overrightarrow{x} [/mm] = [mm] \vektor{6 \\ 1 \\ -4 }+t*\vektor{4 \\ 1 \\ -6 } [/mm]
h: [mm] \overrightarrow{x} [/mm] = [mm] \vektor{4 \\ 0 \\ 3 }+t*\vektor{0 \\ -1 \\ 3 } [/mm]

Nun muss man ja den zu [mm] \vektor{4 \\ 1 \\ -6 } [/mm] und [mm] \vektor{0 \\ -1 \\ 3 } [/mm] orthogonalen Einheitsvektor [mm] \overrightarrow{n}_0 [/mm] bestimmen. D.h. es ergibt sich das folgende LGS
[mm] 4*n_1+n_2-6n_3=0 [/mm]
[mm] -n_2+3*n_3=0 [/mm]

Nun wird hier einfach [mm] n_3=4 [/mm] gesetzt und somit dann der Einheitsvektor bestimmt.

Nun zu meiner Frage: Könnte man hier [mm] n_3 [/mm] gleich jeder beliebigen Zahl setzen? Oder warum wird das hier =4 gesetzt?

Also ich habe auch einfach mal etwas anderes für [mm] n_3 [/mm] eingesetzt, aber dann kommt natürlich ein anderer Abstand heraus. Was muss ich also tun? Was mache ich denn, wenn ich den minimalen Abstand haben möchte?

Danke!

Lg


        
Bezug
Abstand zweier Geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 11:35 Sa 19.01.2013
Autor: Al-Chwarizmi


> Hallo,
>  
> ich habe hier ein Beispiel für die Berechnung des
> Abstandes zweier windschiefer Geraden:
>  
> Es soll der Abstand zwischen folgenden zwei Geraden
> berechnet werden:
>  g: [mm]\overrightarrow{x}[/mm] = [mm]\vektor{6 \\ 1 \\ -4 }+t*\vektor{4 \\ 1 \\ -6 }[/mm]
>  
> h: [mm]\overrightarrow{x}[/mm] = [mm]\vektor{4 \\ 0 \\ 3 }+t*\vektor{0 \\ -1 \\ 3 }[/mm]
>  
> Nun muss man ja den zu [mm]\vektor{4 \\ 1 \\ -6 }[/mm] und [mm]\vektor{0 \\ -1 \\ 3 }[/mm]
> orthogonalen Einheitsvektor [mm]\overrightarrow{n}_0[/mm] bestimmen.
> D.h. es ergibt sich das folgende LGS
>  [mm]4*n_1+n_2-6n_3=0[/mm]
>  [mm]-n_2+3*n_3=0[/mm]
>
> Nun wird hier einfach [mm]n_3=4[/mm] gesetzt und somit dann der
> Einheitsvektor bestimmt.
>
> Nun zu meiner Frage: Könnte man hier [mm]n_3[/mm] gleich jeder
> beliebigen Zahl setzen? Oder warum wird das hier =4
> gesetzt?
>  
> Also ich habe auch einfach mal etwas anderes für [mm]n_3[/mm]
> eingesetzt, aber dann kommt natürlich ein anderer Abstand
> heraus.     [haee]

Nein; einen anderen Abstand erhältst du nicht, wenn
du richtig weiter rechnest !


> Was muss ich also tun? Was mache ich denn, wenn ich
> den minimalen Abstand haben möchte?
>  
> Danke!
>  
> Lg


Hallo,

das nur aus 2 Gleichungen für 3 Unbekannte bestehende
Gleichungssystem ist unterbestimmt. Die zusätzliche
Bedingung, dass du einen Einheitsvektor möchtest,
ergäbe eine weitere Gleichung - aber keine lineare.
Deshalb ist es geschickter, zunächst irgendeinen
(beliebig langen) Normalenvektor zu bestimmen.
Dazu kannst du z.B. die Wahl [mm] n_3 [/mm] = 4 (oder eine
andere geeignete Wahl) treffen. Den so entstehenden
Lösungsvektor kannst du dann nachträglich normieren.
Der normierte Normalenvektor ist dann (wenigstens
bis auf das Vorzeichen) eindeutig und unabhängig von
der vorläufigen Wahl (falls diese nicht zu einem Wider-
spruch geführt hat).  

LG ,   Al-Chw.


Bezug
                
Bezug
Abstand zweier Geraden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:22 Sa 19.01.2013
Autor: judithlein

Danke! Ich hatte mich auch verrechnet mit einer anderen Zahl für [mm] n_3. [/mm] Aber was ist denn jetzt mit dem minimalen Abstand? Hab ich den dann auch automatisch dadurch?

Bezug
                        
Bezug
Abstand zweier Geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 14:03 Sa 19.01.2013
Autor: Al-Chwarizmi


> Danke! Ich hatte mich auch verrechnet mit einer anderen
> Zahl für [mm]n_3.[/mm] Aber was ist denn jetzt mit dem minimalen
> Abstand? Hab ich den dann auch automatisch dadurch?


automatisch ?   nein !

Du hast noch gar nicht gezeigt, wie du denn (nach der
Bestimmung eines gemeinsamen Normalenvektors)
weiter machen willst ...

Ein Tipp:  der Minimalabstand der (nicht parallelen)
Geraden g und h entspricht dem Abstand der beiden
zueinander parallelen Ebenen G und H mit  $\ [mm] g\subset [/mm] G$
und  $\ [mm] h\subset [/mm] H$

LG
Al-Chw.  


Bezug
                                
Bezug
Abstand zweier Geraden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:19 Sa 19.01.2013
Autor: judithlein

Naja, um den Abstand zwischen zwei windschiefen Geraden zu berechnen macht man das dann anschließend so, dass man den Normalenvektor normiert, dann haben wir ja den Normaleneinheitsvektor [mm] n_0. [/mm] Und dann gibt es doch eine Formel: d= [mm] |(p-q)*n_0|. [/mm] Was ist das denn dann für ein Abstand?

Achso, p und q sind dabei die Stützvektoren der beiden Geraden.

Bezug
                                        
Bezug
Abstand zweier Geraden: HNF
Status: (Antwort) fertig Status 
Datum: 15:48 Sa 19.01.2013
Autor: Al-Chwarizmi


> Naja, um den Abstand zwischen zwei windschiefen Geraden zu
> berechnen macht man das dann anschließend so, dass man den
> Normalenvektor normiert, dann haben wir ja den
> Normaleneinheitsvektor [mm]n_0.[/mm] Und dann gibt es doch eine
> Formel: d= [mm]|(p-q)*n_0|.[/mm] Was ist das denn dann für ein
> Abstand?

Der gesuchte.

>  Achso, p und q sind dabei die Stützvektoren der beiden
> Geraden.

Genau.

Und die obige Formel ist das Ergebnis der Überlegungen mit
den beiden parallelen Ebenen (beide mit demselben
Normalenvektor [mm] \vec{n}_0 [/mm] )  und mit ihren Gleichungen in
der "Hesseschen Normalform" ("HNF") .

LG,   Al-Chw.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]