matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikAbweichungsprüfung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Stochastik" - Abweichungsprüfung
Abweichungsprüfung < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abweichungsprüfung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:08 Mo 16.06.2003
Autor: Smara

da muss ich morgen hin...
Folgendes kommt vor:

-Erläuterung des Unterschiedes zwischen "laplace" und "Bernoulli"... jew ein beispiel zu
1. fall ist nur laplace
2.fall ist nur bernoulli
3. fall ist beides
4. fall ist keins von beidem

Erläuterung der zusammenstellung der Bernoullikette/Binomialverteilung und erklärung der einzelnen formelbestandteile

Erklärung der Kombinatörikformeln

Zweiseitiger Hypothesentest incl. Fehler erster und zweiter Art und den beiden Grundaufgaben erklären....


Und ich kann davon garnix...
kann mir jemand sagen, was ich da erzählen soll??
Oder mir hilfreiche links geben?

        
Bezug
Abweichungsprüfung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:29 Mo 16.06.2003
Autor: Marc

Hallo Smara,

> da muss ich morgen hin...
> Folgendes kommt vor:
>
> -Erläuterung des Unterschiedes zwischen "laplace" und
> "Bernoulli"... jew ein beispiel zu

Damit meinst du wahrscheinlich einen Laplace-Versuch und eine Bernoulli-Kette.

Ein Laplace-Versuch ist ein Zufallsversuch, dessen Ergebnisse alle gleich-wahrscheinlich sind (siehe meine Beispiele).
Eine Bernoulli-Kette ist die n-fache Wiederholung eines Zufallsversuchs, der nur nur zwei Ergebnisse hat (die aber nicht notwendigerweise gleichwahrscheinlich sein müssen.)

> 1. fall ist nur laplace

Das Werfen eines Würfels, das Werfen einer (perfekten) Münze, die zufällige Auswahl einer Person aus einer Gruppe,...

> 2.fall ist nur bernoulli

Das n-malige Werfen derselben nicht-perfekten Münze (z.B. zeigt die Münze mit W'keit 0,3 Zahl und mit W'keit 0,7 Kopf.)

Anderes Beispiel:
Man möchte untersuchen, wie häufig beim 10 maligen Werfen eines Würfel eine 6 geworfen wird. Die beiden einzigen Ergebnisse/Ereignisse (die hier nur interessieren) sind: "6 gewürfelt" und "keine 6 gewürfelt".
Dieser Zufallsversuch wird 10 mal wiederholt.

> 3. fall ist beides

Das n-malige Würfeln einer perfekten Münze ist offenbar eine Bernoulli-Kette  und auch ein Laplace-Versuch, denn:
Sagen wir, n = 3. Dann lauten die 8 Ergebnisse des Zufallsversuchs:
KKK
KKZ
KZK
KZZ
ZKK
ZKZ
ZZK
ZZZ
Alle sind gleichwahrscheinlich.

> 4. fall ist keins von beidem

Das ist einfach, und überlasse ich dir :-)

> Erläuterung der zusammenstellung der
> Bernoullikette/Binomialverteilung und erklärung der einzelnen
> formelbestandteile

Einen Anfang wirst du doch finden, oder? Schreib' ihn uns doch mal, und wir führen ihn fort.

> Erklärung der Kombinatörikformeln

Welche?

> Zweiseitiger Hypothesentest incl. Fehler erster und zweiter Art
> und den beiden Grundaufgaben erklären....

s.o.

> Und ich kann davon garnix...
> kann mir jemand sagen, was ich da erzählen soll??
> Oder mir hilfreiche links geben?


Alles Gute für die Prüfung morgen,
Marc


Bezug
                
Bezug
Abweichungsprüfung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:55 Mo 16.06.2003
Autor: Smara

Hallo Marc!

Vielen lieben Dank für deinen Beitrag!!
Du hast mir schonmal sehr weitergeholfen. Im prinzip hätte ich das warscheinlich auch gewusst, nur wusste ich nicht so genau was die aufgabenstellung jetzt sollte...

Zur Kombinatorik:
Ich brauche die Herleitung der Formeln:

n über k
n hoch k
etc

Zur Formel für die Binomialverteilung: das problem ist da bei mir eher der Anfang....

Zum Hypothesentest:
Ich muss einmal den sinn des tests erklären, dann den Fehler erster und zweiter art beschreiben und dann die Grundaufgaben erläutern:
a) annahmebereich ist gegeben
b)annahmebereich ist gesucht

Vielen Dank für deine Hilfe ;)

Bezug
                        
Bezug
Abweichungsprüfung: Kombinatorik
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:26 Mo 16.06.2003
Autor: Marc

Hallo Smara,

> Zur Kombinatorik:
> Ich brauche die Herleitung der Formeln:
>
> n über k
> n hoch k
> etc

Eine ganz gute Herleitung habe ich hier gefunden:

[]http://www.math.uni-hamburg.de/home/werner/Kombinatorik.pdf

Vielleicht liest du dir das erst mal durch, da werden auch deine vier Formeln besprochen.

Gruß,
Marc.


Bezug
                                
Bezug
Abweichungsprüfung: Kombinatorik
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:57 Di 17.06.2003
Autor: Marc

Hallo,

hier die Datei als Kopie im Anhang.


Bezug
                        
Bezug
Abweichungsprüfung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:34 Mo 16.06.2003
Autor: Stefan

Hallo Smara,

Smara schrieb:

> Zur Kombinatorik:
> Ich brauche die Herleitung der Formeln:
>
> n über k
> n hoch k
> etc

Ich bin mir nicht sicher, was du hier genau hören willst. Eine anschauliche Erläuterung oder eine streng mathematische (etwa mit vollständiger Induktion)?

Ich mache es mal mehr oder weniger anschaulich:

Gegeben sei eine n-elementige Menge. Es werden k Elemente gewählt und zwar ohne Zurücklegen und ohne Beachtung der Reihenfolge. Auf wie viele Arten kann dies geschehen?

Wir ordnen die n Elemente [mm] a_1, ...,a_n [/mm] in einer Reihe:

[mm] a_1 a_2 [/mm] .... [mm] a_k a_{k+1} [/mm] ...  [mm] a_{n-1} a_n [/mm]

Hierbei werden die ersten k Elemente [mm] a_1, [/mm] ..., [mm] a_k [/mm] gewählt und die letzten n-k Elemente [mm] a_{k+1}, [/mm] ... , [mm] a_n [/mm] nicht gewählt.

Zunächst einmal gibt es für n! solcher Anordnungen (Anzahl der Vertauschungen einer n-elementigen Menge).

Wir wollen aber die Reihenfolge nicht beachten, d.h. zum Beispiel die beiden Ereignisse

[mm] a_1 a_2 [/mm] .... [mm] a_k a_{k+1} [/mm] ...  [mm] a_{n-1} a_n [/mm]

und

[mm] a_2 a_1 [/mm] .... [mm] a_k a_{k+1} [/mm] ... [mm] a_n a_{n-1} [/mm]

sind völlig gleichbedeutend. Wichtig nur: Unter den ersten k Elementen tauchen [mm] a_1, [/mm] ..., [mm] a_k [/mm] auf, unter den letzten n-k Elementen [mm] a_{k+1}, [/mm] ..., [mm] a_n. [/mm]

Wieviele solcher Vertauschungen sind möglich?

Die ersten k Elemente [mm] a_1, [/mm] ..., [mm] a_k [/mm] lassen sich untereinander auf k! Arten vertauschen, die letzten (n-k) Elemente [mm] a_{k+1}, [/mm] ..., [mm] a_n [/mm] auf (n-k)! Arten.

Zur Wiederholung: Ingesamt lassen sich die n Elemente auf n! Weisen vertauschen, aber zu jeder Vertauschung gibt es k! * (n-k)! ununterscheidbare (="äquivalente") andere Vertauschungen. Von daher gibt es (n über k) = n! / (k! * (n-k)!) unterscheidbare Vertauschungen, und diese sind für unser Problem hier relevant.

Zum zweiten Problem:

Gegeben sei eine n-elementige Menge. Es werden k Elemente gewählt und zwar mit  Zurücklegen und mit Beachtung der Reihenfolge. Auf wie viele Arten kann dies geschehen?

Dies ist viel einfacher: Für die erste Stelle gibt es n Möglichkeiten, für die zweite Stelle gibt es wiederum n Möglichkeiten (wegen "mit Zurücklegen"), ... , für die k-te Stelle gibt es wiederum n Möglichkeiten.
Insgesamt gibt es also

[mm] n^k [/mm] = n * ... * n (k mal)

Möglichkeiten der Anordnung.

> Zur Formel für die Binomialverteilung: das problem ist da bei
> mir eher der Anfang....

Was meinst du damit? Tut mir leid, ich verstehe nicht genau, wo dein Problem liegt.

> Zum Hypothesentest:
> Ich muss einmal den sinn des tests erklären, dann den Fehler
> erster und zweiter art beschreiben und dann die Grundaufgaben
> erläutern:
> a) annahmebereich ist gegeben
> b)annahmebereich ist gesucht

Die Frage ist jetzt etwas zu allgemein gehalten. Leider habe ich nicht so viel Zeit darauf ausführlich einzugehen. Dann könnte ich ja gleich ein Buch dazu schreiben. ;-) Welches Schulbuch hast du denn? Vielleicht könntest du dir die Seiten durchlesen und etwas gezieltere Verständnisfragen zu dem Thema stellen. Viel besser wäre es aber, du würdest eine konkrete Beispielaufgabe hier ins Forum stellen, die wir dann zusammen durchsprechen könnten.

Alles Gute
Stefan


Bezug
                                
Bezug
Abweichungsprüfung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:42 Mo 16.06.2003
Autor: Smara

Super!!
VIELEN VIELEN DANK euch beiden! Ihr habt mir wirklich sehr geholfen!!

Die Sache mit der Kombinatorik habe ich jetzt auch verstanden!
Jetzt muss ich nur noch hinter die sache mit der Binomialverteilung steigen, aber da wird mir sicher mein stochastik buch helfen, was leider garkeine aufzeichnungen/erklärungen zum Thema Testen von Hypothesen beinhaltet.
Aber das krieg ich auch noch irgendwie hin... (ich muss ja auch nich alles können ;))

Danke euch nochmal und einen schönen Abend wünsche ich!

Bezug
                                        
Bezug
Abweichungsprüfung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:14 Di 17.06.2003
Autor: Stefan

Hallo Smara,

erstens: Vielen Dank für deine nette Rückmeldung!

Zweitens: Es tut mir leid, dass ich dir auf die Frage nach dem Hypothesentest nicht vernünftig geantwortet habe. Eigentlich ist das nicht meine Art, aber ich hatte echt keine Zeit, das wäre ein enormer Aufwand gewesen und ich bin erst um 22:00 Uhr von der Arbeit nach Hause gekommen. Wenn du aber bei google "Hypothesentest" eingibst, kommst du bereits auf der ersten Abfrageseite auf einige hilfreiche Seiten. Du solltest die Sachen durcharbeiten, falls deine Prüfung nicht schon vorbei ist.

Drittens: Melde dich doch mal bei uns, wie die Prüfung gelaufen ist. Ich drücke dir die Daumen. :-) Wir würden uns freuen, wenn du dich auch in Zukunft im Forum zumindestens "passiv" (d.h. mit Fragen) beteiligst (und vielleicht sogar "aktiv" (im dem Sinne, dass du auch auf andere Fragen antwortest), das wäre ganz toll und entspricht auch der "Philosophie" dieses Forums).

Viele liebe Grüße
Stefan


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]