matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisAbzählbar
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Abzählbar
Abzählbar < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abzählbar: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:14 Mi 03.08.2005
Autor: Bastiane

Hallo!
Hier eine Aufgabe zur Abzählbarkeit:

Man zeige:
i) Die Menge aller endlichen Teilmengen von [mm] \IN [/mm] ist abzählbar.
ii) Die Menge aller Teilmengen von [mm] \IN [/mm] ist überabzählbar.

i) würde ich so machen:
Also, da eine Vereinigung abzählbar vieler abzählbarer Mengen wieder abzählbar ist, zerlege ich meine Menge in abzählbar viele abzählbare Mengen:

[mm] \IN=\{\mbox{alle einelementigen Teilmengen}\}\cup\{\mbox{alle zweielementigen Teilmengen}\}\cup...\cup\{\mbox{alle n-elementigen Teilmengen}\} [/mm]

Dies sind offensichtlich abzählbar viele Mengen (nämlich [mm] \IN=M_1\cup M_2\cup...\cup M_n [/mm] mit [mm] M_i=\{\mbox{alle i-elementigen Teilmengen}\} [/mm] (würde man das so erklären? oder reicht es, wenn man sagt, dass es abzählbar viele Mengen sind?). Und jede dieser abzählbar vielen Mengen ist wiederum abzählbar, denn die einelementigen Mengen kann man ja wieder ganz einfach abzählen: [mm] M_1=\{1\}\cup\{2\}\cup...\cup\{n\} [/mm] usw. Die k-elementigen Teilmengen könnte man doch dann mit der []Catorschen Paarungsfunktion auch abzählen, oder nicht? (Ich kannte diese Funktion gar nicht, aber so wie ich das verstehe, lässt sich das damit machen.)

Und somit habe ich eine Vereinigung abzählbar vieler abzählbarer Menge, und diese ist nach einem Satz wiederum abzählbar, womit der gesucht Beweis erbracht wäre.

Stimmt das so?

Allerdings weiß ich leider nicht, wie ich ii) beweisen soll, könnte mir da jemand einen Hinweis geben?

Ach ja, und noch eine Frage: gibt es den Begriff "abzählbare Vereinigung"? Wenn ja, ist das das gleiche wie "Vereinigung abzählbar vieler Mengen"? Oder was ist damit gemeint?

Viele Grüße
Bastiane
[banane]


        
Bezug
Abzählbar: Antwort
Status: (Antwort) fertig Status 
Datum: 14:59 Mi 03.08.2005
Autor: Sigrid

Hallo Bastiane,

vielleicht hilft dir das:
https://matheraum.de/read?i=28520

Gruß
Sigrid

Bezug
        
Bezug
Abzählbar: Antwort
Status: (Antwort) fertig Status 
Datum: 08:47 Do 04.08.2005
Autor: Hanno

Hallo Christiane!

> Und somit habe ich eine Vereinigung abzählbar vieler abzählbarer Menge, und diese ist nach einem Satz wiederum abzählbar, womit der gesucht Beweis erbracht wäre.

> Stimmt das so?

Ja, das ist richtig! [ok]

> Allerdings weiß ich leider nicht, wie ich ii) beweisen soll, könnte mir da jemand einen Hinweis geben?

Na klar :) Es gibt hier zwei Möglichkeiten, die du dir beide auf Grund ihrer Nützlichkeit und Eleganz einprägen solltest. Bijektionen muss man oft konstruieren, dafür ist (2) ein schönes Beispiel.

(1) Beweis von: Es gibt keine Bijektion von [mm] $\IN$ [/mm] nach [mm] ${\cal P}(\IN)$. [/mm]

Beweis durch Widerspruch. Nehmen wir an, es gäbe eine solche bijektive Abbildung [mm] $f:\IN\to{\cal P}(\IN)$. [/mm] Betrachten wir nun die Menge $M$ der [mm] $n\in \IN$ [/mm] mit [mm] $n\notin [/mm] f(n)$. Da $f$ bijektiv ist, existiert ein [mm] $m\in \IN$ [/mm] mit $f(m)=M$. Nehmen wir an, es sei [mm] $m\in [/mm] M$. Dann folgte aus der Definition von $M$ sofort [mm] $m\notin [/mm] f(m)=M$ - Widerspruch. Nehmen wir an, es sei [mm] $m\notin [/mm] M$, dann folgte aus der Definition von $M$ sofort [mm] $m\in [/mm] M$ - Widerspruch. Damit kann die genannte Bijektion $f$ nicht existieren.

(2) Beweis von: [mm] $\IR$ [/mm] ist gleichmächtig zu [mm] ${\cal P}(\IN)$. [/mm]

Es sei [mm] $x\in\IR$ [/mm] mit [mm] $x=\summe_{n=-\infty}^{\infty} 2^n a_n$ [/mm] mit [mm] $a_n\in\{0,1\}, n\in\IZ$. [/mm] Definiere [mm] $f:\IR\to{\cal P}(\IZ)$ [/mm] durch [mm] $f(x)=\{n\in \IZ\vert a_n=1\}$. [/mm] Dann ist (Beweis überlasse ich dir) $f$ eine Bijektion. Damit ist [mm] $\vert {\cal P}(\IZ)\vert [/mm] = [mm] \vert\IR\vert$. [/mm] Komposition mit einer Bijektion von [mm] ${\cal P}(\IZ)$ [/mm] nach [mm] ${\cal P}(\IN)$ [/mm] führt dann zum gewünschten Ergebnis. Damit ist [mm] ${\cal P}(\IN)$ [/mm] überabzählbar, es kann folglich keine Bijektion von [mm] $\IN$ [/mm] auf [mm] ${\cal P}(\IN)$ [/mm] geben.


Liebe Grüße,
Hanno

Bezug
                
Bezug
Abzählbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:51 Do 04.08.2005
Autor: Bastiane

Hallo Hanno!
Danke für die Antwort.

> (1) Beweis von: Es gibt keine Bijektion von [mm]\IN[/mm] nach [mm]{\cal P}(\IN)[/mm].

Also erstmal direkt eine Frage: in meinem Buch steht Abzählbarkeit nicht mit einer bijektiven sondern nur mit einer surjektiven Abbildung definiert. Warum?
  

> Beweis durch Widerspruch. Nehmen wir an, es gäbe eine
> solche bijektive Abbildung [mm]f:\IN\to{\cal P}(\IN)[/mm].
> Betrachten wir nun die Menge [mm]M[/mm] der [mm]n\in \IN[/mm] mit [mm]n\notin f(n)[/mm].
> Da [mm]f[/mm] bijektiv ist, existiert ein [mm]m\in \IN[/mm] mit [mm]f(m)=M[/mm].

Irgendwie verstehe ich diesen letzten Satz nicht so ganz. Wieso folg solch ein m aus der Bijektivität?

Viele Grüße
Christiane
[hand]

Bezug
                        
Bezug
Abzählbar: Antwort
Status: (Antwort) fertig Status 
Datum: 11:15 Do 04.08.2005
Autor: Hanno

Hallo Christiane.

> Also erstmal direkt eine Frage: in meinem Buch steht Abzählbarkeit nicht mit einer bijektiven sondern nur mit einer surjektiven Abbildung definiert. Warum?

Hier liegt wohl ein Fehler meinerseits vor. Die Definition der Abzählbarkeit über die Existenz einer Surjektion sollte richtig sein. Schließlich sind auch endliche Mengen abzählbar. Für abzählbar unendliche Mengen sind die Existenz einer Surjektion und die einer Bijektion äquivalent, wenn ich mich recht entsinne, da es in diesem Falle auch eine Surjektion von der zu untersuchenden Menge auf die Menge der natürlichen Zahlen gibt. Dann folgt [nach Schröder-Bernstein], dass es wegen der Existenz zweier surjektiver Abbildungen zwischen den Mengen (oder, was das gleiche ist, zweier injektiver Abbildungen) auch eine bijektive Abbildung existiert.

Dies gilt z.B. auch in der Aufgabe, die du zu lösen hast. Eine Injektion von [mm] $\IN$ [/mm] nach [mm] ${\cal P}(\IN)$ [/mm] ist schließlich leicht zu finden. Gäbe es nun auch eine Surjektion von [mm] $\IN$ [/mm] nach [mm] ${\cal P}(\IN)$, [/mm] d.h. eine Injektion von [mm] ${\cal P}(\IN)$, [/mm] dann folgte die Existenz einer Bijektion. Wollen wir also die Überabzählbarkeit von [mm] ${\cal P}(\IN)$ [/mm] beweisen, dann können wir für den Widerspruchsbeweis annehmen, dass eine bijektive Abbildunge existierte.

> Irgendwie verstehe ich diesen letzten Satz nicht so ganz. Wieso folg solch ein m aus der Bijektivität?

Die Menge $M$ ist eine Teilmenge der natürlichen Zahlen, $f$ nach Voraussetzung eine Bijektion von [mm] $\IN$ [/mm] nach [mm] ${\cal P}(\IN)$. [/mm] Es gibt daher zu jeder Teilmenge [mm] $X\subset\IN$ [/mm] ein [mm] $x\in\IN$ [/mm] mit $f(x)=X$; insbesondere gibt es ein solches $x$, im Beweis als $m$ bezeichnet, auch für die Menge $M$. Klar?


Liebe Grüße,
Hanno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]