matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenAchsenabschnittsgleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Geraden und Ebenen" - Achsenabschnittsgleichung
Achsenabschnittsgleichung < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Achsenabschnittsgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:23 Sa 26.09.2009
Autor: Dinker

Wie lautet die Achsenabschnittsgleichung der Ebene E: 3x + 6y + 4z = 18?

Guten Nachmittag

Ich habe keine Ahnung, was da zu machen ist.
Wäre dankba rum Hilfe
Danke
Gruss Dinker

        
Bezug
Achsenabschnittsgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:37 Sa 26.09.2009
Autor: steppenhahn

Hallo Dinker!

> Wie lautet die Achsenabschnittsgleichung der Ebene E: 3x +
> 6y + 4z = 18?

An der Achsenabschnittsform einer Ebene kann man ganz leicht ablesen, wo die Ebene jeweils die x-, die y- und die z-Achse schneidet. Schneidet nämlich deine Ebene die x-Achse zum Beispiel bei [mm] (x_{1}|0|0), [/mm] die y-Achse bei [mm] (0|y_{1}|0) [/mm] und die z-Achse bei [mm] (0|0|z_{1}), [/mm] dann muss die Achsenabschnittsform so aussehen:

[mm] $\frac{x}{x_{1}} [/mm] + [mm] \frac{y}{y_{1}} [/mm] + [mm] \frac{z}{z_{1}} [/mm] = 1$

Um eine normale Koordinatenform jetzt in so eine Achsenabschnittsform umzuwandeln, solltest du also erstmal rechts eine 1 erzeugen:

   $3x + 6y + 4z = 18$

[mm] $\gdw \frac{1}{6}*x [/mm] + [mm] \frac{1}{3}*y [/mm] + [mm] \frac{2}{9}*z [/mm] = 1$

So, und nun musst du nur noch durch geschicktes Erstellen von Doppelbrüchen in die Achsenabschnittsform umformen:

[mm] $\gdw \frac{x}{6} [/mm] + [mm] \frac{y}{3} [/mm] + [mm] \frac{2}{9}*z [/mm] = 1$

Das leuchtet denk ich erstmal ein. Nun müssen wir uns noch dem z-Teil widmen, da muss man jetzt einen Doppelbruch erstellen:

[mm] $\gdw \frac{x}{6} [/mm] + [mm] \frac{y}{3} [/mm] + [mm] \frac{z}{\frac{9}{2}} [/mm] = 1$

Und fertig :-)

Grüße,
Stefan

Bezug
                
Bezug
Achsenabschnittsgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:45 Sa 26.09.2009
Autor: Dinker

Hallo

Danke für die Erklärung.

Gruss Dinker

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]