matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesAdjungierte Abbildung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra Sonstiges" - Adjungierte Abbildung
Adjungierte Abbildung < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Adjungierte Abbildung: Tipp
Status: (Frage) überfällig Status 
Datum: 16:44 Mo 25.04.2016
Autor: maggie123

Aufgabe
Seien [mm](V,<*,*>_{V})[/mm] und [mm](V,<*,*>_{W})[/mm] endlich-dim. Hilberträume und [mm]u_{V}:V->V^{\*}, v \to <*,v>[/mm] ein c-linearer Isomorphismus, analog für [mm]u_{W}[/mm]
Zeige, dass:
(a) [mm]h:Lin(V,W) \to Lin(W,V), f \to f^{ad}:= u_{V}^{-1} \circ f^{\*} \circ u_{W}[/mm] ein c-linearer VR-Isomorphismus ist
(b) [mm]_{V} = _{W} [/mm]
(c)  für [mm]f:V \to W[/mm] , [mm]g: W \to Y[/mm] gilt: [mm](g \circ f)^{ad} = f^{ad} \circ g^{ad}[/mm]

Hallo,

ich komme mit den Aufgaben nicht ganz zurecht, was evtl. auch daran liegen könnte, dass ich das Konzept der Adjungierten (noch) nicht ganz verstanden habe.

Meine Lösungen bis jetzt:
Zu (a):
Für die c-Linearität: [mm]h(f+g) = u_{V}^{-1} \circ (f+g)^{\*} \circ u_{W} = u_{V}^{-1} \circ (f^{\*}+g^{\*}) \circ u_{W}= (u_{V}^{-1} \circ (f^{\*}+g^{\*}))\circ u_{W}= (u_{V}^{-1} \circ f^{\*}+ u_{V}^{-1} \circ g^{\*}) \circ u_{W} = (u_{V}^{-1} \circ f^{\*} \circ u_{W}) + (u_{V}^{-1} \circ g^{\*}\circ u_{W}) = h(f)+h(g)[/mm]
Analog für [mm]h(\lambda*f)[/mm]
Für die Bijektivität hätte ich [mm]k:Lin(W,V) \to Lin(V,W), f \to u_{W}^{-1} \circ f^{\*} \circ u_{V}[/mm] definiert und [mm]h \circ k = id[/mm] bzw. [mm] k \circ h = id[/mm] gezeigt, aber das hat irgendwie zu nichts geführt...

[mm]h(k(f)) = h(u_{W}^{-1} \circ f^{\*} \circ u_{V}) = u_{V}^{-1} \circ (u_{W}^{-1} \circ f^{\*} \circ u_{V})^{\*} \circ u_{W} = u_{V}^{-1} \circ u_{V}^{\*} \circ f^{\*\*} \circ (u_{W}^{-1})^{\*} \circ u_{W} [/mm] Damit kann ich aber irgendwie nichts anfangen..

Zu (b) habe ich überhaupt keinen Ansatz gefunden

Zu (c): Habe ich mit (b) gelöst, also:
[mm]<(g \circ f)(v),w> = = = = [/mm]

Hat jemand Ansätze für den restlichen Teil von (a) und die (b). Bitte keine vollständigen Lösungen.

LG

maggie

        
Bezug
Adjungierte Abbildung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Do 28.04.2016
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]