matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieAffiner Raum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Topologie und Geometrie" - Affiner Raum
Affiner Raum < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Affiner Raum: Tipp
Status: (Frage) beantwortet Status 
Datum: 14:13 Sa 09.06.2012
Autor: AntonK

Aufgabe
Sei V ein euklidischer Vektorraum und M = a+W ein affner Unterraum, und sei b [mm] \in [/mm] V .
Zeigen Sie:
(a) Es gibt genau ein x [mm] \in [/mm] M mit [mm] $\langle [/mm] b-x, w [mm] \rangle= [/mm] 0$ für alle w [mm] \in [/mm] W.
(b) Für dieses x gilt $d(b,M) = ||b-x||$

Hallo Leute,

und zwar habe ich Probleme bei den Aufgaben, wollte bei der a) wie folgt beginnen:

[mm] $\langle [/mm] b-x, w [mm] \rangle= [/mm] 0$ <=> [mm] $\langle [/mm] b,w [mm] \rangle [/mm] - [mm] \langle [/mm] x,w [mm] \rangle=0$ [/mm]

Dies ist natürlich noch nichts, aber wie genau zeigt man, dass es nur genau ein x gibt, dass dies erfüllt? Muss ich mir eines wählen und dann zeigen, dass ein x' gleich diesem x ist?

Danke schonmal!

        
Bezug
Affiner Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 02:03 So 10.06.2012
Autor: leduart

Hallo
verwende die def von x!
Gruss leduart

Bezug
                
Bezug
Affiner Raum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:28 So 10.06.2012
Autor: AntonK

Was genau meinst du mit Definition?

Etwa:

[mm] (b_1*w_1+...+b_n*w_n)-(x_1*w_1+...+x_n*w_n)=0<=>(w_1+...+w_n)*((b_1+...+b_n)-(x_1+...+x_n))=0<=>(b_1+...+b_n)=(x_1+...+x_n) [/mm]

Also entweder ist w 0 oder b=x, kann man das so machen?

Bezug
                        
Bezug
Affiner Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 17:18 So 10.06.2012
Autor: leduart

Hallo
ich hatte eigentlich an x=a+w1 gedacht mit [mm] w1\in [/mm] W
gruss leduart

Bezug
                                
Bezug
Affiner Raum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:26 So 10.06.2012
Autor: AntonK

Ich stehe nicht ganz, was ich mit darunter vorstellen muss, das ist doch einfach ein Vektor x, der um w verschoben ist oder wie? Verstehe das schon in meinem Skript nicht ganz. Bräuchte mal eine Erklärung dazu bitte.

Bezug
                                        
Bezug
Affiner Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 22:26 So 10.06.2012
Autor: leduart

Hallo
ein Bsp im [mm] R^2 [/mm] oder [mm] R^3 [/mm]
: in [mm] R^2 [/mm] bilden  alle Vektoren, der Form (r,2r) einen UVR du stellst dir den als Gerade durch (0,0) vor.
die vektoren auf der Geraden a+(r,2r) bilden keinen UVR aber einen affinen UR alle Vektoren haben  mit a=(2,1) die Form
(2,1)+(r,2r) vorstellen kannst du dir den affinen Raum als die zu (r,2r) parallele Gerade durch (2,1)
x hat also hier die Form (2,1)+(r,2r) w die Form ((r,2r) und b aus [mm] R^2 [/mm] die Form (b1,b2) b1,b2  beliebig.
jetz machs mal mit dem einfachen Bsp.
dann geh in den R°3, W ist eine ebene oder Gerade durch (0,0,0) M das um a verschobene Objekt. auch hier kannst du wieder konkret rechnen.
dann klickts vielleicht.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]