matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraAlgebraische Körpererweiterung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Algebra" - Algebraische Körpererweiterung
Algebraische Körpererweiterung < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Algebraische Körpererweiterung: Teilerfremde Zwischengrade
Status: (Frage) beantwortet Status 
Datum: 19:05 Mo 22.01.2007
Autor: Math_Preacher

Aufgabe
Sei  K [mm] \subseteq [/mm] L  eine algebraische Körpererweiterung und  [mm] \alpha [/mm] , [mm] \beta \in [/mm] L.

Sind die Körpergrade

m = [mm] [K(\alpha):K] [/mm]


und

n = [mm] [K(\beta):K] [/mm]


teilerfremd, so gilt

[mm] [K(\alpha,\beta):K] [/mm] = m*n.

Hallo allerseits!

Mir ist die Aufgabe nur soweit klar, daß ich die Gradformel anwenden kann, sobald ich weiß, daß

[mm] [K(\alpha,\beta):K(\alpha)] [/mm] = n


bzw.

[mm] [K(\alpha,\beta):K(\beta)] [/mm] = m


gilt. Aber ich habe irgendwie entweder ein Brett vor dem Kopf, oder ich sehe den Wald vor lauter Bäumen nicht.

Mein Informations-/Wissensstand über Körpererweiterungen basiert auf den Büchern von Bosch und Jantzen/Schwermer, falls das irgendwem hilft. Ich habe auch noch das Buch von Hungerford da. Das nur so als Hinweise, falls mir jemand sagen möchte "Du, schau Dir doch einfach den und den Satz an!". ;-)

Bin für jede Hilfe dankbar. Die Aufgabe ist eine Aufgabe auf dem aktuellen Übungsblatt - den Rest habe ich schon, nur diese eine Aufgabe fuchst mich einfach. *grummel*

Liebe Grüße,

Alex

        
Bezug
Algebraische Körpererweiterung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:38 Mo 22.01.2007
Autor: unknown

Hallo Alex,


hmm, ich hätte auf die Schnelle folgenden Ansatz zu bieten: Wegen

  $K [mm] \subseteq K(\alpha) \subseteq K(\alpha,\beta)$ [/mm]

und

  $K [mm] \subseteq K(\beta) \subseteq K(\alpha,\beta)$ [/mm]

gelten doch

  $m = [mm] [K(\alpha) [/mm] : K] [mm] \Bigl.\;\Bigm|\;\Bigr. [K(\alpha,\beta) [/mm] : K]$

sowie

  $n = [mm] [K(\alpha) [/mm] : K] [mm] \Bigl.\;\Bigm|\;\Bigr. [K(\alpha,\beta) [/mm] : K]$.

Also wird [mm] $[K(\alpha,\beta) [/mm] : K]$ vom kgV von $m$ und $n$ geteilt, was gerade $mn$ ist. Das liefert eine Abschätzung von [mm] $[K(\alpha,\beta) [/mm] : K]$ nach unten. Jetzt brauchst Du nur noch eine Abschätzung nach oben. Aber die dürfte nicht so schwierig sein, denke ich.


Hoffe, das hilft.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]