matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenAllg. Lösung konstante Koeffiz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - Allg. Lösung konstante Koeffiz
Allg. Lösung konstante Koeffiz < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Allg. Lösung konstante Koeffiz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:27 Mo 22.08.2011
Autor: cruemel

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
Bestimmen Sie alle Lösungen des DGLSystems
$x' = \pmat{ 1 & 0 & 0 \\ -1 & 1 & 1 \\ 0 & 0 & 1 }x$


Hallo Alle,
irgendwie steh ich grad total aufm Schlauch.
Ich bin so gut wie fertig mit dieser Aufgabe, mir fehlt jetzt nur noch das Fundamentalsystem und die allgemeine Lösung.

Der dreifache Eigenwert ist 1.
Der Lösungsraum ist zweidimensional mit den Vektoren
$\vec{u} = \vektor{1 \\ 0 \\ 1}$ und $\vec{v} = \vektor{0 \\ 1 \\ 0}$.

Nun bestimme ich einen Hauptvektor
$\pmat{ 0 & 0 & 0 \\ -1 & 0 & 1 \\ 0 & 0 & 0 }\vec{w} =\vektor{1 \\ 0 \\ 1}$

Als Ergebnis erhalte ich z.B. $\vec{w}\vektor{0 \\ 1 \\ 1}$

Jetzt meine Frage, wie lautet das Fundamentalsystem und die allgemeine Lösung?

Ist es
$x(t) = A \vektor{1 \\ 0 \\ 1} e^t + B t\vektor{0 \\ 1 \\ 0}e^t  + C \bruch{t^2}{2}}\vektor{0 \\ 1 \\ 1}e^t   $

oder
$x(t) = A \vektor{1 \\ 0 \\ 1} e^t + B t\vektor{0 \\ 1 \\ 0}e^t  + C \bruch{t^2}{2}}(t \vektor{1 \\ 0 \\ 1} + \vektor{0 \\ 1 \\ 1}) e^t $

Oder sind beide richtig oder doch ganz anders?

Irgendwie scheint mir meine vorhandene Literatur etwas widersprüchlich.

Wäre super wenn mir jemand weiterhelfen könnte.

Grüße crümel


        
Bezug
Allg. Lösung konstante Koeffiz: Antwort
Status: (Antwort) fertig Status 
Datum: 06:52 Mo 22.08.2011
Autor: angela.h.b.


> Nun bestimme ich einen Hauptvektor
>  [mm]\pmat{ 0 & 0 & 0 \\ -1 & 0 & 1 \\ 0 & 0 & 0 }\vec{w} =\vektor{1 \\ 0 \\ 1}[/mm]
>  
> Als Ergebnis erhalte ich z.B. [mm]\vec{w}\vektor{0 \\ 1 \\ 1}[/mm]

Hallo,

[mm] \vec{w}=\vektor{0 \\ 1 \\ 1} [/mm] ist aber keine Lösung Deiner Gleichung.

Es ist aber [mm] \pmat{ 0 & 0 & 0 \\ -1 & 0 & 1 \\ 0 & 0 & 0 }\vec{w} =\vektor{0 \\ 1 \\ 0}. [/mm]


>  
> Jetzt meine Frage, wie lautet das Fundamentalsystem und die
> allgemeine Lösung?
>  
> Ist es
> [mm]x(t) = A \vektor{1 \\ 0 \\ 1} e^t + B t\vektor{0 \\ 1 \\ 0}e^t + C \bruch{t^2}{2}}\vektor{0 \\ 1 \\ 1}e^t [/mm]
>  
> oder
> [mm]x(t) = A \vektor{1 \\ 0 \\ 1} e^t + B t\vektor{0 \\ 1 \\ 0}e^t + C \bruch{t^2}{2}}(t \vektor{1 \\ 0 \\ 1} + \vektor{0 \\ 1 \\ 1}) e^t[/mm]
>  
> Oder sind beide richtig oder doch ganz anders?

Ich würd' sagen: anders.

>  
> Irgendwie scheint mir meine vorhandene Literatur etwas
> widersprüchlich.

Welche Literatur wollen wir nehmen, um die Sache zu besprechen und die Diskrepanzen zu klären?

Gruß v. Angela


Bezug
                
Bezug
Allg. Lösung konstante Koeffiz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:56 Mo 22.08.2011
Autor: cruemel

Hallo, ich glaub es war im Aulbach wo etwas von polynomen als Vorfaktoren drin stand. Wie geht es nun wirklich??
Grüße
crümel

Bezug
                        
Bezug
Allg. Lösung konstante Koeffiz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:46 Mo 22.08.2011
Autor: cruemel

Achja, das mit dem Hauptvektor war ein Rechenfehler:


[mm] $\pmat{ 0 & 0 & 0 \\ -1 & 0 & 1 \\ 0 & 0 & 0 }\vec{w} =\vektor{0 \\ 1 \\0 }$ [/mm]
Richtiges Ergebnis
[mm] $\vec{w}\vektor{-1 \\ 0 \\ 0}$ [/mm]

Bezug
                        
Bezug
Allg. Lösung konstante Koeffiz: Antwort
Status: (Antwort) fertig Status 
Datum: 10:55 Mo 22.08.2011
Autor: angela.h.b.


> Hallo, ich glaub es war im Aulbach wo etwas von polynomen
> als Vorfaktoren drin stand. Wie geht es nun wirklich??

Hallo,

irgendwie hätte ich gedacht, daß Du jetzt mal hinschreibst, was in Deinem Aulbach oder sonstwo steht und wo die Diskrepanzen sind...

Du hast zur Kenntnis genommen, daß Dein Hauptvektor [mm] \vec{w} [/mm] die Gleichung [mm] A\vec{w}=\vec{u} [/mm] nicht löst?
Er löst aber die Gleichung [mm] A\vec{w}=\vec{v}, [/mm] ist insofern also doch brauchbar.

Du hast jetzt die Basis [mm] (\vec{u}, \underbrace{ \vec{v}=(A-1*E)\vec{w},\vec{w}}_{Hauptvektorkette}). [/mm]

Du bekommst das Fundamentalsystem [mm] (y_1, y_2, y_3) [/mm] mit

[mm] y_1=e^{1*t}*\vec{u}, [/mm]

[mm] y_2=e^{1*t}*\vec{v}, \qquad y_3=e^{1*t}*(\bruch{t^1}{1!}*\vec{v}+\vec{w})=e^{1*t}*(t*\vec{v}+\vec{w}), [/mm]

und jede Lösung von x'(t)=Ax(t) ist eine Linearkombination von [mm] (y_1, y_2, y_3). [/mm]
Rechne nach, daß es stimmt!

Gruß v. Angela




Bezug
                                
Bezug
Allg. Lösung konstante Koeffiz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:08 Mo 22.08.2011
Autor: cruemel

Ah danke schon mal, eines ist mir aber noch unklar, ich hätte gedacht, man muss bereits bei gleichen Eigenwerten zu den  Eigenvektoren noch das Polynom multiplizieren?

Also
$ [mm] y_1=e^{1\cdot{}t}\cdot{}\vec{u} [/mm] $ und bereits bei
[mm] $y_2=e^{1*t}*\bruch{t^1}{1!}*\vec{v}$ [/mm] schreiben?

Das ist doch immer so bei mehrfachen Eigenwerten?

Bezug
                                        
Bezug
Allg. Lösung konstante Koeffiz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:16 Mo 22.08.2011
Autor: cruemel

Hm, ich glaub ich hab da was verwechselt. Bei eindimensionalen Problemen (also zB [mm] $y''+a_0 [/mm] y' + [mm] a_1 [/mm] =0$) multipliziert man grundsätzlich bei Eigenwerten mit Vielfachheit größer eins ein Polynom der Form [mm] $1,x,x^2, x^3,...$ [/mm]
Bei Systemen ist ja die lineare Unabhängigkeit schon gegeben aufgrund der linear unabhängigen Vektoren, oder?

Bezug
                                                
Bezug
Allg. Lösung konstante Koeffiz: Antwort
Status: (Antwort) fertig Status 
Datum: 15:48 Mo 22.08.2011
Autor: MathePower

Hallo cruemel,

> Hm, ich glaub ich hab da was verwechselt. Bei
> eindimensionalen Problemen (also zB [mm]y''+a_0 y' + a_1 =0[/mm])
> multipliziert man grundsätzlich bei Eigenwerten mit
> Vielfachheit größer eins ein Polynom der Form [mm]1,x,x^2, x^3,...[/mm]
>  
> Bei Systemen ist ja die lineare Unabhängigkeit schon
> gegeben aufgrund der linear unabhängigen Vektoren, oder?


Das ist richtig, sofern es zu einem Eigenwert
mehrere Eigenvektoren gibt.


Gruss
MathePower

Bezug
                                        
Bezug
Allg. Lösung konstante Koeffiz: Antwort
Status: (Antwort) fertig Status 
Datum: 12:44 Mo 22.08.2011
Autor: angela.h.b.


> Ah danke schon mal, eines ist mir aber noch unklar, ich
> hätte gedacht, man muss bereits bei gleichen Eigenwerten
> zu den  Eigenvektoren noch das Polynom multiplizieren?
>  
> Also
>  [mm]y_1=e^{1\cdot{}t}\cdot{}\vec{u}[/mm] und bereits bei
>  [mm]y_2=e^{1*t}*\bruch{t^1}{1!}*\vec{v}[/mm] schreiben?
>  
> Das ist doch immer so bei mehrfachen Eigenwerten?

Hallo,

nein.
Es wäre ganz gut zu wissen, was genau in den Unterlagen, mit denen Du arbeitest, steht. Dann könnte ich mich mit meinen Ausführungen nämlich exakt darauf beziehen.

Du hast zum dreifachen Eigenwert hier die Eigenvektoren [mm] \vec{u} [/mm] und [mm] \vec{v}. [/mm]
Um eine Basis des [mm] \IR^3 [/mm] zu haben, brauchen wir einen weiteren Vektor [mm] \vec{w}, [/mm] welchen wir so bestimmen, daß [mm] (A-1*E)\vec{w}=\vec{v}. [/mm]
Dies hast Du getan, die Basis ist komplett.
Sie besteht aus zwei Hauptvektorketten:

1. die sehr kurze Kette [mm] \vec{u} [/mm]
2. die längere Kette [mm] \vec{v}, \vec{w} [/mm]

Die erste Kette liefert [mm] y_1(t)=e^{1*t}*\bruch{x^0}{0!}\vec{u}=e^{t}*\vec{u}, [/mm]
von der zweiten Kette bekommen wir
[mm] y_2(t)=e^{1*t}*\bruch{x^0}{0!}\vec{v}=e^{t}\vec{v}, [/mm]
[mm] y_3(t)=e^{1*t}*(\bruch{x^1}{1!}\vec{v}+\bruch{x^0}{0!}\vec{w}). [/mm]


Anders wäre es, wenn wir einen dreifachen Eigenwert hätten und der Eigenraum die Dimension 1 hätte.

Dann würden wir nur eine Hauptraumkette bauen, welche aus drei Vektoren besteht.

Gruß v. Angela






Bezug
                                                
Bezug
Allg. Lösung konstante Koeffiz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:18 Mo 22.08.2011
Autor: cruemel

Ah ok, mir war nicht klar, dass mit die Hauptvektorketten zu einem Eigenwert getrennt betrachtet.
Das mit der Literatur ist halt schwierig, ich hab hier fünf Bücher aus der Bib rumliegen, und dann nochmal ca 5 Ebooks und diverse Quellen aus dem Internet.... Daher weiß ich auch nicht mehr was ich wo gelesen hab :-D

Vielen Dank auf jedem Fall für die ausführliche Erklärung.
Grüße crümel


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]