matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenAllgemeine Beweisregeln
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Allgemeine Beweisregeln
Allgemeine Beweisregeln < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Allgemeine Beweisregeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:36 So 04.11.2007
Autor: jokerose

Aufgabe
Gegeben ist nur die Folge [mm] \bruch{\wurzel[n]{n}}{n}. [/mm]

Ich habe eher eine allgemeine Frage zu Beweismethoden:

Ich möchte jetzt mal Beweisen, dass diese Folge eine Nullfolge ist. Wäre zum Beispiel dieser Ablauf erlaubt:

Ich stelle die Behauptung auf, dass diese Folge gegen 0 konvergiert. Also ist diese eine Nullfolge. [mm] \Rightarrow [/mm] Folge konvergiert.
Da die Folge konvergiert, kann ich schreiben:

[mm] \limes_{n\rightarrow\infty} \bruch{\wurzel[n]{n}}{n} [/mm] = [mm] \bruch{\limes_{n\rightarrow\infty} \wurzel[n]{n}}{ \limes_{n\rightarrow\infty}n}. [/mm]
Und das ist dann logischerweise 0.

Ist dieser Ablauf korrekt. Müsste ich dazu nicht zuerst mal beweisen, dass die Folge konvergiert, bevor ich eine Beziehung brache, welche die Konvergenz voraussetzt?
Jetzt kommt meine eigentliche Frage:
Darf man im Allgemeinen eine Beziehung brauchen, die nur direkt aus der Behauptung folgt?

        
Bezug
Allgemeine Beweisregeln: Antwort
Status: (Antwort) fertig Status 
Datum: 16:51 So 04.11.2007
Autor: Hund

Hallo,

allgemein gilt, dass man bei direkten Beweisen von nichts ausgehendarf, was man nicht bewiesen hat. Bei deinem Ablauf brauchst du deine Zusatzbehauptung gar nicht. Der Zähler konvergiert gegen 1. Der Nenner gegen Unendlich. Für solche Fälle gibt es einen Satz, der besagt, das der Quotient dann eine Nullfolge ist.

Ich hoffe, es hat dir geholfen.

Gruß
Hund

Bezug
                
Bezug
Allgemeine Beweisregeln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:59 So 04.11.2007
Autor: jokerose

Ja das ist gut so.
Vielen Dank.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]