matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenAlternative gesucht
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Vektoren" - Alternative gesucht
Alternative gesucht < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Alternative gesucht: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:19 Do 08.10.2009
Autor: Dinker

Guten Abend


Für welchen reelen Wert von a sind die folgenden Vektoren komplanar.

[mm] \vektor{3 \\ a \\ a^{2} }, \vektor{1 \\ 1 \\ a }, \vektor{2 \\ 0 \\ a} [/mm]

Also eben mit dem Verfahren:

b* [mm] \vektor{3 \\ a \\ a^{2} }, [/mm] c* [mm] \vektor{1 \\ 1 \\ a }, [/mm] d* [mm] \vektor{2 \\ 0 \\ a} [/mm] =  [mm] \vektor{0 \\ 0 \\ 0}, [/mm] wird das überaus mühsam.

Wer präsentiert mir einen Alternativweg?

Danke
Gruss Dinker




        
Bezug
Alternative gesucht: Antwort
Status: (Antwort) fertig Status 
Datum: 21:23 Do 08.10.2009
Autor: XPatrickX

Ich kenne nicht dein Vorwissen.
Eine Möglichkeit wäre die Vektoren in eine Matrix zu schreiben und überprüfen ob die [mm] \det=0 [/mm] ist.

Bezug
                
Bezug
Alternative gesucht: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:26 Do 08.10.2009
Autor: Dinker

Hallo

gerne nehme ich den Ratschlag entgegen. Jedoch bin ich auf ausführliche Erklärung angewiesen.

Danke
Gruss Dinker

Bezug
                        
Bezug
Alternative gesucht: Antwort
Status: (Antwort) fertig Status 
Datum: 21:38 Do 08.10.2009
Autor: schachuzipus

Hallo Dinker,

leider ist dein Ausgangspost etwas daneben geraten, bearbeite das mal bitte.

Es scheint mir um die Vektoren [mm] $\vektor{3\\a\\a^2}, \vektor{1\\1\\a}, \vektor{2\\0\\a}$ [/mm] zu gehen.

Wie mein Vorredner sagt, schreibe diese als Spalten in eine Matrix A

[mm] $A=\pmat{3&1&2\\a&1&0\\a^2&a&a}$ [/mm]

Nun bestimme - etwa mit der []Regel von Sarrus - die Determinante von A, also $det(A)$.

Diese ergibt sich in Abhängigkeit von a.

Für diejenigen [mm] $a\in\IR$, [/mm] für die $det(A)=0$ ist, sind die Vektoren linear abhängig.

Gruß

schachuzipus



Bezug
                                
Bezug
Alternative gesucht: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:41 Do 08.10.2009
Autor: Dinker

Hallo

Kannst du mir die Determinante vorrechnen? Bitte, ich wäre sehr dankbar.

Danke
Gruss Dinker

Bezug
                                        
Bezug
Alternative gesucht: Antwort
Status: (Antwort) fertig Status 
Datum: 21:44 Do 08.10.2009
Autor: schachuzipus

Hallo nochmal,

> Hallo
>  
> Kannst du mir die Determinante vorrechnen? Bitte, ich wäre
> sehr dankbar.

Das denke ich mir ...

Ich rechne es dir vor, nachdem du einen eigenen Versuch gestartet und gepostet hast (und es nicht stimmen sollte).

Wie es geht, steht sehr anschaulich auf der verlinkten Seite erklärt ...

>  
> Danke
>  Gruss Dinker

LG

schachuzipus

Bezug
                                
Bezug
Alternative gesucht: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:04 Do 08.10.2009
Autor: Dinker

Hallo


3a + 0 + [mm] 2a^2 [/mm] + [mm] 2a^2 [/mm] + 0 + [mm] a^2 [/mm]

Und?

Bezug
                                        
Bezug
Alternative gesucht: Antwort
Status: (Antwort) fertig Status 
Datum: 22:08 Do 08.10.2009
Autor: schachuzipus

Hallo Dinker,

> Hallo
>  
>
> 3a + 0 + [mm]2a^2[/mm] + [mm]2a^2[/mm] + 0 + [mm]a^2[/mm]
>  
> Und?

Das ist schon sehr gut, allerdings musst du die Produkte auf der Nebendiagonalen subtrahieren, daher sind die Vorzeichen bei den letzten 3 Summanden flasch.

Richtig ist [mm] $det(A)=3a+0+2a^2\red{-}2a^2\red{-}0\red{-}a^2=3a-a^2$ [/mm]

Nun prüfe, für welche(s) [mm] $a\in\IR$ [/mm] das 0 ergibt ...

Gruß

schachuzipus


Bezug
                                                
Bezug
Alternative gesucht: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:10 Do 08.10.2009
Autor: Dinker

Hallo

Einfach wie ein normales Gleichungssystem behandeln?

a1 = 0
a2 = 3

Gruss Dinker

Bezug
                                                        
Bezug
Alternative gesucht: Antwort
Status: (Antwort) fertig Status 
Datum: 22:21 Do 08.10.2009
Autor: schachuzipus

Hallo nochmal,

> Hallo
>  
> Einfach wie ein normales Gleichungssystem behandeln?

Wenn du so willst, ja: ein Gleichungssystem mit einer Gleichung ;-)

>  
> a1 = 0 [ok]
>  a2 = 3 [ok]

Gut!

LG

schachuzipus

>  
> Gruss Dinker


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]