matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikAmplitude
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Physik" - Amplitude
Amplitude < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Amplitude: Tipp
Status: (Frage) beantwortet Status 
Datum: 13:05 Mi 14.07.2010
Autor: Trapt_ka

Aufgabe
hi
habe folgende aufgabe und findfe net wirklich zum ziel
Ein Federpendel der Masse m=30 g und der Kreisfrequenz ω=2s -1 befindet sich zum Zeitpunkt t=0 in
y=3 cm Entfernung von der Ruhelage; seine Geschwindigkeit beträgt v=6 cm/s.
a) Wie groß sind Amplitude, Maximalgeschwindigkeit, Maximalbeschleunigung und
Nullphasenwinkel?
b) Welche Gesamtenergie hat das System?
finde keinen ansatz  

hey irgend wie machen mir die schwingugne zu schaffen
komm damit gar nicht zu recht
weil egal was ich einsetzt
[mm] y(t)=A*sin(\omega*t) [/mm]
[mm] v(t)=A*\omega cos(\omega*t) [/mm]
ich komme auf kein ergebniss

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Amplitude: Antwort
Status: (Antwort) fertig Status 
Datum: 13:15 Mi 14.07.2010
Autor: metalschulze

Hallo,

hier hast du keinen reinen Sinus (bei t=0 ist die Auslenkung nicht null) aber auch keinen reinen Cosinus (dann wäre die Geschwindigkeit gleich 0, er wäre in seinem Umkehrpunkt mit der maximalen Auslenkung).
Du müsstest hier also entweder beides ansetzen: [mm] A*sin(\omega*t) [/mm] + [mm] B*cos(\omega*t) [/mm] oder einen Sinus oder Cosinus mit Phasenverschiebung [mm] C*sin(\omega*t [/mm] + [mm] \phi). [/mm] Dieser Ansatz ist dir in einem der vorhergehenden Posts übrigens schon mal nahegelegt worden...

Gruß Christian

Bezug
                
Bezug
Amplitude: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:25 Mi 14.07.2010
Autor: Trapt_ka

Aufgabe
ja schon  

aber ch komme nicht auf [mm] \phi [/mm]
und ich acht auch ich habs verstanden aber irgend wie doch net
weil wenn ich den ansatz
$ [mm] A\cdot{}sin(\omega\cdot{}t) [/mm] $ + $ [mm] B\cdot{}cos(\omega\cdot{}t) [/mm] $
nehme dann wird doch der vordere term 0

Bezug
                        
Bezug
Amplitude: Antwort
Status: (Antwort) fertig Status 
Datum: 13:53 Mi 14.07.2010
Autor: Event_Horizon

Hallo!

Ja, das ist korrekt, für t=0 wird der Sinus =0, und der erste Term fällt weg. Der COS wird =1, und damit hast du B bestimmt.
Allerdings ist das nicht die maximale Amplitude.

Du hast aber noch ne Info über die Geschwindigkeit, und dort wird dann der rechte Teil wegfallen, und der linke stehen bleiben, und du kannst A bestimmen.

Denk dran, die Geschwindigkeit ist die Ableitung nach t!

Generell ist diese Methode einfacher zu rechnen, anschaulicher finde ich persönlich die Methode über die FUnktion [mm] $C*\sin(\omega t+\phi)$, [/mm] weil da besser sichtbar drin steckt, daß die Schwingung zur Zeit t=0 irgendwo mittendrin hängt, und nicht in der Nullage oder im Maximum.

Bezug
                                
Bezug
Amplitude: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 18:02 Mi 14.07.2010
Autor: Trapt_ka

Aufgabe
sorry ich bekomme es net hin

kannst du es mir vieleicht mal aufschreiben?

Bezug
                                        
Bezug
Amplitude: konkreter fragen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:04 Mi 14.07.2010
Autor: Loddar

Hallo Trapt_ka!


Kannst Du Deine Frage / Unklarheit bitte "etwas" konkreter formulieren?


Gruß
Loddar


Bezug
                                                
Bezug
Amplitude: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:07 Mi 14.07.2010
Autor: Trapt_ka

sorry
also es sieht jetzt wie folgt aus

ich kann ja einmal sagen
[mm] y(t=0)=3cm=A\cdot{}sin(\omega\cdot{}t)+B\cdot{}cos(\omega\cdot{}t) [/mm] $
daraus weis ich dann dass B=1cm
wenn ich jetzt hergehen und sage
$ [mm] 6m/s=A\cdot{}\omega\cdot{}cos(0)+B\cdot{}\omega\cdot{}sin(0) [/mm] $
bekomme ich ein A von 3m
und das ist weit von meinem ergebniss das gegeben ist entfernt

Bezug
                                                        
Bezug
Amplitude: Antwort
Status: (Antwort) fertig Status 
Datum: 22:49 Mi 14.07.2010
Autor: Kroni

Hallo,

nun verstehe ich deine Vorgehensweise nicht.

> [mm]y(t=0)=3cm=A\cdot{}sin(\omega\cdot{}t)+B\cdot{}cos(\omega\cdot{}t)[/mm]
> $
> daraus weis ich dann dass B=1cm

Warum denn das? Wenn $y(0) = B = [mm] 3\,\text{cm}$ [/mm] sein soll, dann ist doch [mm] $B=3\,\text{cm}$! [/mm]

Also nochmal in Ruhe:

Du hast also gegeben:

$y(t=0) = [mm] 3\,\text{cm}$ [/mm] und [mm] $\dot{y}(t=0) [/mm] = [mm] v_y(t=0) [/mm] = [mm] 6\,\frac{\text{m}}{\text{s}}$. [/mm]

Dann gilt, wie du schreibst:

$y(t) = [mm] A\sin\omega [/mm] t + [mm] B\cos\omega [/mm] t$:

$y(t=0) = B [mm] \overset{!}{=} 3\,\text{cm}$ [/mm] und

[mm] $\dot{y}(t) [/mm] = A [mm] \omega \cos\omega [/mm] t - B [mm] \omega \sin\omega [/mm] t$

(da hast du ein Vorzeichen falsch).

Dann ist doch

[mm] $\dot{y}(t=0) [/mm] = [mm] A\omega \overset{!}{=} 6\,\frac{\text{m}}{\text{s}}$ [/mm]

also

$A = [mm] \frac{6}{\omega} \,\frac{\text{m}}{\text{s}}$ [/mm]

Also haben wir dann, wenn [mm] $\omega [/mm] = [mm] 2\,s^{-1}$ [/mm] ist:

$y(t) = [mm] \left[3\sin\omega t + 3 \cos\omega t\right] \,\text{cm}$ [/mm]

Soweit okay?

Das kommt dann mit deinen Werten heraus. Welches Ergebnis hast du denn gegeben?

LG

Kroni


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]