matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenAnalysis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Exp- und Log-Funktionen" - Analysis
Analysis < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Analysis: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:55 Fr 14.04.2006
Autor: weisnixnix

Aufgabe
Für welche ganze Zahlen n [mm] \ge [/mm] 0 gilt 2^(n+3)  > [mm] 3^n [/mm] ? Beweisen Sie Ihre Behauptung?

Benötige dringens Hilfe da ich bei dieser Aufgabe keine Schritt weiterkomme geschweige weis was gemeint ist?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

Dateianhänge:
Anhang Nr. 1 (Typ: rtf) [nicht öffentlich]
        
Bezug
Analysis: Antwort
Status: (Antwort) fertig Status 
Datum: 14:19 Fr 14.04.2006
Autor: Fugre


> Für welche ganze Zahlen n [mm]\ge[/mm] 0 gilt 2^(n+3)  > [mm]3^n[/mm] ?
> Beweisen Sie Ihre Behauptung?
>  Benötige dringens Hilfe da ich bei dieser Aufgabe keine
> Schritt weiterkomme geschweige weis was gemeint ist?
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt

Hallo Ingemar,

versuchen wir es doch mal mit Hilfe der Potenzregeln. Es gilt [mm] $x^n*x^m=x^{n+m}$, [/mm] daraus folgt bei uns [mm] $2^{3+n}=2^3*2^n=8*2^n$, [/mm] in unsere Ungleicung eingesetzt [mm] $8*2^n>3^n$, [/mm] da [mm] $2^n>0$ [/mm] ist können wir einfach dividieren [mm] $\to \frac{3^n}{2^n}<8$. [/mm] Nun gilt ja ebenfalls [mm] $\frac{a^n}{b^n}=(\frac{a}{b})^n$. [/mm] Verwenden wir auch das, so erhalten wir [mm] $8>(\frac{3}{2})^n \to 8>1,5^n$. [/mm] Jetzt müssen wir logarithmieren und erhalten [mm] $\ln{8}>\ln{1,5^n} \to \ln{8}>n*\ln{1,5} \to n<\frac{\ln{8}}{\ln{1,5}}$. [/mm] Das ist jetzt die obere Grenze.

Gruß
Nicolas

Bezug
        
Bezug
Analysis: Rückfrage?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:07 Fr 14.04.2006
Autor: Loddar

Hallo Ingemar!


Bitte nicht kommentarlos eine beantwortete Frage auf "unbeantwortet" stellen. Falls Dir noch etwas unklar sein sollte, teile uns bitte auch Deine konkrete Rückfrage mit.


Gruß
Loddar


Bezug
                
Bezug
Analysis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:14 Fr 14.04.2006
Autor: weisnixnix

Sorry, aber irgenwie kann ich mir nicht erklären das die Lösung in dieser From richtig sein soll. Vielleicht habe ich vergessen das vorher im Lehrtext stande bionomische Lehrsatz und dann kam die Vollständige Induktion. Aufgrund dieser beider Dinge bin ich etwas irritiert. Danke im voraus .

Bezug
                        
Bezug
Analysis: Das ist die Antwort!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Fr 14.04.2006
Autor: Loddar

Hallo Ingemar!


So wie die Frage gestellt wurde, ist diese wie von Fugre erläutert exakt beantwortet.
Oder sollst Du dann diese Ungleichung im Anschluss noch mittels vollständiger Induktion nachweisen (was aber "doppelt gemoppelt" wäre ...)?


Gruß
Loddar


Bezug
                        
Bezug
Analysis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:24 Fr 14.04.2006
Autor: Fugre

Hi Ingemar,

überprüfe die Lösung doch einfach. Wenn [mm] $2^{n+3}>3^n$ [/mm] gilt, dann folgt daraus natürlich auch [mm] $2^{n+3}-3^n>0$. [/mm] Das kann ich ja in eine Funktion umwandeln [mm] $\to f(n)=2^{n+3}-3^n$. [/mm] In dem Bereich, in dem sie oberhalb der x-Achse verläuft ist die Ungleichung erfüllt.

[Dateianhang nicht öffentlich]

Aber viele Wege führen nach Rom.

Gruß
Nicolas



Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]