matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisAnalysis // Parabelgleichungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Schul-Analysis" - Analysis // Parabelgleichungen
Analysis // Parabelgleichungen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Analysis // Parabelgleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:45 Mi 08.09.2004
Autor: chnopf

Hallo - ich hoffe mir kann jemand helfen. Ich habe morgen einen Analysis- Test und stolpere noch über Aufgaben mit Parabelgleichungen.


Eine zum Ursprung symmetrische Parabel 5.Ordnung geht durch P (1/3) und berührt die x- Achse bei x = -2.


Wäre sehr froh über eine Antwort..



Ich habe diese Frage in keinem weiteren Forum gestellt.

        
Bezug
Analysis // Parabelgleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:05 Mi 08.09.2004
Autor: Marc

Hallo chnopf,

[willkommenmr]

> Eine zum Ursprung symmetrische Parabel

f(x)=-f(-x)
bzw. bei ganzrationalen Funktionen äquivalent: Alle Koeffizienten von Potenzen mit geradem Exponenten verschwinden, s. nächste Bedingung:

> 5.Ordnung

[mm] $f(x)=ax^5+bx^4+cx^3+dx^2+ex+f$ [/mm]

Wegen Punktsymmetrie sind b=d=f=0:

[mm] $f(x)=ax^5+cx^3+ex$ [/mm]

> geht durch P (1/3)

i) f(1)=3

> und berührt die x- Achse bei x = -2.

Die x-Achse fällt also mit der an der Stelle x=-2 gebildeten Tangente zusammen; diese Tangente hat die Steigung m=0 (sie verläuft ja horizontal), also muß gelten:

ii) f'(-2)=0

Weiterhin verläuft f natürlich auch durch den Berührpunkt der Tangente (-2|0), es gilt:

iii) f(-2)=0

Aus i), ii) und iii) kannst du nun ein lineares Gleichungssystem (LGS) erstellen:

f(1)=3
f'(-2)=0
f(-2)=0

Ersetzen der Funktionsbezeichner durch die allgemeine Funktionsvorschrift [mm] $f(x)=ax^5+cx^3+ex$ [/mm] bzw. [mm] $f'(x)=5ax^4+3cx^2+e$: [/mm]

[mm] $a*1^5+c*1^3+e*1=3$ [/mm]
[mm] $5a(-2)^4+3c(-2)^2+e=0$ [/mm]
[mm] $a*(-2)^5+c*(-2)^3+e*(-2)=0$ [/mm]

Das ist nun ein "stinknormales" LGS, das frei von der eigentlichen Problemstellung gelöst werden kann.

Bei Problemen melde dich bitte wieder, ebenso, falls wir deine Ergebnisse korrigieren sollen (bitte mit Rechenweg angeben) :-)

Viele Grüße,
Marc


Bezug
                
Bezug
Analysis // Parabelgleichungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:22 Mi 08.09.2004
Autor: chnopf

Vielen, vielen Dank...

wenn man es mir im Unterricht auch so erklären würde :)


Keine Sorge, ich werde wieder schreiben - meine mathematische Begabung ist noch nicht vom Himmel gefallen ;)

Grüsse zurück
Chnopf




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]