Analytische Geometrie < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:06 Di 08.02.2005 | Autor: | Sue20 |
Man bestimme die Hessesche Normalform der Ebenengleichung für die Ebene, auf der der Vektor [mm] \vec{a} [/mm] = [mm] \vektor{2 \\ 3 \\ 6} [/mm] senkrecht steht und die den Punkt [mm] P_{0} [/mm] (-2,-1,1) enthält.
Die hab ich : 2/7 x + 3/7 y + 6/7 z - 1/7 = 0 (mit normiertem Normalenvektor)
Nun ist die Frage, welche Abstände die Punkte [mm] P_{1} [/mm] (-1,0,2) und [mm] P_{2} [/mm] (-1,-1,1) von E haben. Lösung: [mm] h_{1} [/mm] = 11/7, [mm] h_{2} [/mm] = 2/7
Wie geht man hier vor, wenn die Ebene in parameterfreier Darstellung vorliegt und der Abstand Punkt - Ebene gesucht ist? Ich kenne nur die Formel für die Parameterdarstellung: h = [mm] \bruch{|\vec{c}*\vec{n}|}{|\vec{n}|} [/mm] (wobei [mm] \vec{c} [/mm] = [mm] \overrightarrow{P_{1}P_{0}}, P_{1} [/mm] ist Ortsvektor der Ebene, [mm] P_{0} [/mm] ist der Punkt).
Und wie geht man generell vor, wenn 3 Punkte gegeben sind, die in einer Ebene liegen und die parameterfreie Gleichung gesucht ist? Wie setzt man da die Punkte ein? Gibt es da eine einfachere/schnellere Lösung, als erst die Parametergleichung aufzustellen und dann den Normalenvektor auszurechnen?
LG Sue
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:31 Di 08.02.2005 | Autor: | Loddar |
Hallo Sue!
Bitte nicht mehrere unterschiedliche Aufgaben in einem Strang stellen.
Daher habe ich Deine 2. Aufgabe verschoben (Aufgabe 2) und zu einer eigenständigen Frage "erhoben".
Grüße
Loddar
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:30 Di 08.02.2005 | Autor: | moudi |
> Man bestimme die Hessesche Normalform der Ebenengleichung
> für die Ebene, auf der der Vektor [mm]\vec{a}[/mm] = [mm]\vektor{2 \\ 3 \\ 6}[/mm]
> senkrecht steht und die den Punkt [mm]P_{0}[/mm] (-2,-1,1)
> enthält.
>
> Die hab ich : 2/7 x + 3/7 y + 6/7 z - 1/7 = 0 (mit
> normiertem Normalenvektor)
>
> Nun ist die Frage, welche Abstände die Punkte [mm]P_{1}[/mm]
> (-1,0,2) und [mm]P_{2}[/mm] (-1,-1,1) von E haben. Lösung: [mm]h_{1}[/mm] =
> 11/7, [mm]h_{2}[/mm] = 2/7
>
> Wie geht man hier vor, wenn die Ebene in parameterfreier
> Darstellung vorliegt und der Abstand Punkt - Ebene gesucht
> ist? Ich kenne nur die Formel für die Parameterdarstellung:
> h = [mm]\bruch{|\vec{c}*\vec{n}|}{|\vec{n}|}[/mm] (wobei [mm]\vec{c}[/mm] =
> [mm]\overrightarrow{P_{1}P_{0}}, P_{1}[/mm] ist Ortsvektor der
> Ebene, [mm]P_{0}[/mm] ist der Punkt).
Hallo Sue
Man kann die Ebebenengleichung in "Vektornotation" schreiben. Mit dem Ortsvektor [mm] $\vec r=\vektor{x \\ y \\ z}$ [/mm] des "allgemeinen Punktes" und dem Normalenvektor [mm] $\vec [/mm] n$ ergibt sich [mm] $E:\vec n\cdot \vec [/mm] r=d$.
Man kann diese Gleichung so interpretieren: Die Ebene E besteht aus allen Punkten P(x,y,z), für dessen Ortsvektor [mm] $\vec [/mm] r$ gilt, dass das Skalarprodukt mit dem Vketor [mm] $\vec [/mm] n$ gleich d ist.
(Bsp.: 3x-y+2z=11, [mm] $\vec n=\vektor{3 \\ -1\\2}$ [/mm] und d=11.
Wenn man die Gleichung so hat, gilt für den Abstand eines Punktes P zur Ebene E die Formel
[mm] $d(P,E)=\frac{|\vec n\cdot\vec r_P-d|}{|\vec n|}$. [/mm] Man muss einfach die Koordinaten von P für x,y,z in die Ebenengleichung einsetzen.
(Bsp.: P(-2,3,1) [mm] $d(P,E)=\frac{|3\cdot -2-3+2\cdot 1-11|}{\sqrt{14}}=\frac{18}{\sqrt{14}}$)
[/mm]
> Und wie geht man generell vor, wenn 3 Punkte gegeben sind,
> die in einer Ebene liegen und die parameterfreie Gleichung
> gesucht ist? Wie setzt man da die Punkte ein? Gibt es da
> eine einfachere/schnellere Lösung, als erst die
> Parametergleichung aufzustellen und dann den Normalenvektor
> auszurechnen?
Ja, es gibt ein (relativ) schnelles Verfahren um den Normalenvektor zu berechnen!
Sind A, B, C die drei Punkte, deren Ebenengleichung gesucht ist, so ist der Normalenvektor [mm] $\vec [/mm] n$ gegeben durch [mm] $\vec n=\overrightarrow{AB}\times\overrightarrow{AC}$.
[/mm]
Den Parameter d erhält man als Skalarprodukt von [mm] $\vec [/mm] n$ mit dem Ortsvektor von A: [mm] $d=\vec n\cdot\vec r_A$, [/mm] da ja A ein Punkt der Ebene ist.
mfG Moudi
>
> LG Sue
>
|
|
|
|