matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenAnfangswertproblem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gewöhnliche Differentialgleichungen" - Anfangswertproblem
Anfangswertproblem < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anfangswertproblem: Idee
Status: (Frage) beantwortet Status 
Datum: 18:23 Mi 22.05.2019
Autor: Ataaga

Aufgabe
Hallo, ich habe Aufgabe a berechnet, bei b habe ich leider kein Plan...
Kann bitte jemand helfen?

LG

Dateianhänge:
Anhang Nr. 1 (Typ: PNG) [nicht öffentlich]
Anhang Nr. 2 (Typ: jpg) [nicht öffentlich]
Anhang Nr. 3 (Typ: jpg) [nicht öffentlich]
        
Bezug
Anfangswertproblem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:44 Mi 22.05.2019
Autor: Martinius

Hallo Ataaga,

mir würde es helfen, wenn Du die Aufgabe, um die es geht, mit dem Editor hier eintippen würdest.

LG, Martinius

Bezug
                
Bezug
Anfangswertproblem: Rückmeldung
Status: (Frage) beantwortet Status 
Datum: 16:41 Do 23.05.2019
Autor: Ataaga

Hallo,
Gegeben sei dieses Anfangswertproblem:
x'sint-x cost=t           [mm] x(\pi/2)=1 [/mm]

Bestimmen Sie alle Lösungen, in dem Sie...
a)die Variation der Konstanten explizit durchführen
b)die allgemeine Lösungsformel verwenden:

[mm] $x(t)=e^{A(t)} [/mm]  * [mm] \left( x_0+ \integral_{t_0}^{t}{e^{-A(s)} *g(s) dx} \right)$ [/mm]

Bezug
                        
Bezug
Anfangswertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 19:23 Do 23.05.2019
Autor: Martinius

Hallo Ataaga,

(1)   [mm] $\frac{dx}{dt}*sin(t)-x*cos(t)\;=\;t$ [/mm]

[mm] $\frac{dx}{dt}*sin(t)-x*cos(t)\;=\;0$ [/mm]

[mm] $\frac{dx}{dt}\;=\;x*\frac{cos(t)}{sin(t)}$ [/mm]

[mm] $\int \frac{1}{x}\;dx\;=\;\int \frac{cos(t)}{sin(t)} \; [/mm] dt$

[mm] $ln|x|\;=\;ln|sin(t)|+C$ [/mm]

(2)    [mm] $x(t)\;=\;D*sin(t)$ [/mm]

[mm] $x(t)\;=\;D(t)*sin(t)$ [/mm]

[mm] $\dot x\;=\;\dot [/mm] D*sin(t)+D*cos(t)$

Einsetzen in (1):  [mm] $(\dot D*sin(t)+D*cos(t))*sin(t)-(D*sin(t))*cos(t)\;=\;t$ [/mm]

[mm] $\frac{dD}{dt}*(sin(t))^2\;=\;t$ [/mm]

[mm] $\int dD\;=\;\int \frac{t}{(sin(t))^2}\;dt$ [/mm]   Hier verwende ich eine Formelsammlung.

[mm] $D\;=\;-t*\frac{cos(t)}{sin(t)}+ln|sin(t)|+E$ [/mm]

Einsetzen in (2):

[mm] $x(t)\;=\;-t*cos(t)+sin(t)*ln|sin(t)|+E*sin(t)$ [/mm]

Nun noch die Anfangsbedingung einsetzen.


LG, Martinius


P.S. Wie ich eben erst sehe hast Du a) schon richtig gelöst.

Bezug
                                
Bezug
Anfangswertproblem: Rückmeldung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:43 Do 23.05.2019
Autor: Ataaga

Hallo,
danke. Ich habe problme bei b?
ich weißes nicht wie ich b rechnen sol mit der allgemeinen Formel!

Gruß

Bezug
                                        
Bezug
Anfangswertproblem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:13 Fr 24.05.2019
Autor: fred97


> Hallo,
>  danke. Ich habe problme bei b?
>  ich weißes nicht wie ich b rechnen sol mit der
> allgemeinen Formel!

Die Formel lautet:



$ [mm] x(t)=e^{A(t)} \cdot{} \left( x_0+ \integral_{t_0}^{t}{e^{-A(s)} \cdot{}g(s) dx} \right) [/mm] $.

In Deiner Aufgabe ist

$A(t)= [mm] \frac{\cos(t)}{\sin(t)}= \cot(t)$, [/mm]

$g(t)=t$,

[mm] t_0=\pi/2 [/mm] und [mm] x_0=1. [/mm]


>  
> Gruß


Bezug
                        
Bezug
Anfangswertproblem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:34 Do 23.05.2019
Autor: chrisno

Ich habe mal die Darstellung der Formel in Ordnung gebracht. Da fehlten ein paar geschweifte Klammern.

Bezug
        
Bezug
Anfangswertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 11:00 Fr 24.05.2019
Autor: fred97

Ich denke, dass die Frage nun beantwortet ist.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]