matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLaplace-TransformationAnfangswertproblem Laplace Tra
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Laplace-Transformation" - Anfangswertproblem Laplace Tra
Anfangswertproblem Laplace Tra < Laplace-Transformation < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Laplace-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anfangswertproblem Laplace Tra: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:30 Mi 01.12.2010
Autor: M-Ti

Hey Ihr Lieben,

ich habe mich gerade wieder an 2 Aufgaben probiert. Ich brauch teilweise Hilfe bzw. Jemanden der mal drüberschaut ob das so richtig ist:

1)
y'+y=1    y(0)=2

[mm] s*F(s)-2+F(s)=\bruch{1}{s} [/mm]
<->
[mm] F(s)[s+1]=\bruch{1}{s}+2=\bruch{1+2s}{s} [/mm]
<->
[mm] F(s)=\bruch{1+2s}{s(s+1)} [/mm]

Ansatz zur PBZ:
[mm] F(s)=\bruch{A}{s}+\bruch{B}{s+1} [/mm]

[mm] A=\bruch{1+2s}{s+1} [/mm] mit s=0 --> A=1

[mm] \bruch{1+2s-(s+1)}{s(s+1)}=\bruch{1}{s+1}=\bruch{B}{s+1} [/mm]

--> B=1


2)

y''+2y=sin(t)    mit y(0)=1 und y'(0)=1
-->
[mm] s^2*F(s)-s+1+2*Fs)=\bruch{1}{s^2+1} [/mm]
<->
[mm] F(s)=\bruch{1}{(s^2+1)(s^2+2)}+\bruch{s-1}{s^2+2} [/mm]

Ist der Ansatz für die PBZ so richtig?:

[mm] F(s)=\bruch{As+B}{s^2+1}+\bruch{Cs+D}{s^2+2}+\bruch{Es+F}{s^2+2} [/mm]

--> E=1 und F=-1

Wie kriege ich jetzt am einfachsten A,B,C und D raus?
Ich hab es so gemacht:

[mm] 1=(As+B)(s^2+2)+(Cs+D)(s^2+1) [/mm]
[mm] =As^3+2As+Bs^2+2B+Cs^3+Cs+Ds^2+D [/mm]
[mm] =s^3[A+C]+s^2[B+D]+s[2A+C]+[2B+D] [/mm]

Koeffizientenvergleich:
1=[2B+D]  (1)
[A+C]=0   <-> C=-A
[2A+C]=0  <->A=0
[B+D]=0  <-> D=-B in (1)

1=2B-B=B --> B=1 und D=-1

Joa, ist das denn so richtig und gibt es einen schnelleren Weg um A,B,C und D zu berechnen?

Vielen Dank.
Gruß
M-Ti

        
Bezug
Anfangswertproblem Laplace Tra: Antwort
Status: (Antwort) fertig Status 
Datum: 17:53 Mi 01.12.2010
Autor: MathePower

Hallo M-Ti,

> Hey Ihr Lieben,
>  
> ich habe mich gerade wieder an 2 Aufgaben probiert. Ich
> brauch teilweise Hilfe bzw. Jemanden der mal drüberschaut
> ob das so richtig ist:
>  
> 1)
>  y'+y=1    y(0)=2
>  
> [mm]s*F(s)-2+F(s)=\bruch{1}{s}[/mm]
>  <->
>  [mm]F(s)[s+1]=\bruch{1}{s}+2=\bruch{1+2s}{s}[/mm]
>  <->
>  [mm]F(s)=\bruch{1+2s}{s(s+1)}[/mm]


Lass das mal lieber so stehen:

[mm]F(s)=\bruch{1}{s*\left(s+1\right)}+\bruch{2}{s+1}[/mm]


>  
> Ansatz zur PBZ:
>  [mm]F(s)=\bruch{A}{s}+\bruch{B}{s+1}[/mm]
>  
> [mm]A=\bruch{1+2s}{s+1}[/mm] mit s=0 --> A=1
>  
> [mm]\bruch{1+2s-(s+1)}{s(s+1)}=\bruch{1}{s+1}=\bruch{B}{s+1}[/mm]
>  
> --> B=1
>  
>
> 2)
>  
> y''+2y=sin(t)    mit y(0)=1 und y'(0)=1
>  -->
>  [mm]s^2*F(s)-s+1+2*Fs)=\bruch{1}{s^2+1}[/mm]


Hier muss doch stehen:

[mm]s^2*F(s)-s\red {-}1+2*Fs)=\bruch{1}{s^2+1}[/mm]


>  <->
>  [mm]F(s)=\bruch{1}{(s^2+1)(s^2+2)}+\bruch{s-1}{s^2+2}[/mm]
>  
> Ist der Ansatz für die PBZ so richtig?:
>  
> [mm]F(s)=\bruch{As+B}{s^2+1}+\bruch{Cs+D}{s^2+2}+\bruch{Es+F}{s^2+2}[/mm]


Der Ansatz lautet hier doch so:

[mm]F(s)=\bruch{As+B}{s^2+1}+\bruch{Cs+D}{s^2+2}[/mm]


>  
> --> E=1 und F=-1
>  
> Wie kriege ich jetzt am einfachsten A,B,C und D raus?
>  Ich hab es so gemacht:
>  
> [mm]1=(As+B)(s^2+2)+(Cs+D)(s^2+1)[/mm]
>  [mm]=As^3+2As+Bs^2+2B+Cs^3+Cs+Ds^2+D[/mm]
>  [mm]=s^3[A+C]+s^2[B+D]+s[2A+C]+[2B+D][/mm]
>  
> Koeffizientenvergleich:
>  1=[2B+D]  (1)
>  [A+C]=0   <-> C=-A

>  [2A+C]=0  <->A=0
>  [B+D]=0  <-> D=-B in (1)

>  
> 1=2B-B=B --> B=1 und D=-1
>  
> Joa, ist das denn so richtig und gibt es einen schnelleren
> Weg um A,B,C und D zu berechnen?
>  
> Vielen Dank.
>  Gruß
>  M-Ti


Gruss
MathePower

Bezug
                
Bezug
Anfangswertproblem Laplace Tra: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:04 Mi 01.12.2010
Autor: M-Ti

Lass das mal lieber so stehen:

$ [mm] F(s)=\bruch{1}{s\cdot{}\left(s+1\right)}+\bruch{2}{s+1} [/mm] $

Wenn ich das jetzt so stehen lasse, dann wäre es:

[mm] \bruch{1}{s(s+1)}+\bruch{2}{s+1}=\bruch{A}{s}+\bruch{B}{s+1}+\bruch{C}{s+1}, [/mm] wobei ich entweder das [mm] \bruch{B}{s+1} [/mm] oder das [mm] \bruch{C}{s+1} [/mm] weg streichen kann laut deinem Post zu der anderen Aufgabe.

dann gilt:
[mm] \bruch{1}{s(s+1)} -\bruch{1}{s} [/mm] (weil A=1)
[mm] =\bruch{-s}{s(s+1)}=\bruch{-1}{s+1} [/mm] und somit wäre B bzw. C =-1? Also war meine Rechnung, die ich Anfangs gepostet habe falsch? Da hatte ich B=1

Bezug
                        
Bezug
Anfangswertproblem Laplace Tra: Antwort
Status: (Antwort) fertig Status 
Datum: 18:19 Mi 01.12.2010
Autor: MathePower

Hallo M-Ti,


> Lass das mal lieber so stehen:
>  
> [mm]F(s)=\bruch{1}{s\cdot{}\left(s+1\right)}+\bruch{2}{s+1}[/mm]
>  
> Wenn ich das jetzt so stehen lasse, dann wäre es:
>  
> [mm]\bruch{1}{s(s+1)}+\bruch{2}{s+1}=\bruch{A}{s}+\bruch{B}{s+1}+\bruch{C}{s+1},[/mm]
> wobei ich entweder das [mm]\bruch{B}{s+1}[/mm] oder das
> [mm]\bruch{C}{s+1}[/mm] weg streichen kann laut deinem Post zu der
> anderen Aufgabe.
>  
> dann gilt:
>  [mm]\bruch{1}{s(s+1)} -\bruch{1}{s}[/mm] (weil A=1)
>  [mm]=\bruch{-s}{s(s+1)}=\bruch{-1}{s+1}[/mm] und somit wäre B bzw.
> C =-1? Also war meine Rechnung, die ich Anfangs gepostet
> habe falsch? Da hatte ich B=1

Hier  hast Du den Bruch [mm]\bruch{2}{s+1}[/mm] vergessen zu addieren:

[mm]\bruch{1}{s(s+1)} -\bruch{1}{s}+\bruch{2}{s+1}=\bruch{-1}{s+1}+\bruch{2}{s+1}=\bruch{1}{s+1}[/mm]

Somit ist B=1.


Gruss
MathePower


Bezug
                                
Bezug
Anfangswertproblem Laplace Tra: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:36 Mi 01.12.2010
Autor: M-Ti

Ahhh, ja klar. Hab wohl heute schon zu lange gemacht, dass ich den Wald vor lauter Bäumen nicht mehr sehe.

Kannst du bitte noch die Frage zur 2. Aufgabe beantworten, dann mache ich für heute auch Schluss..

Vielen Dank

Bezug
                
Bezug
Anfangswertproblem Laplace Tra: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:10 Mi 01.12.2010
Autor: M-Ti

zur 2. Aufgabe:

OK, das hatte ich gepostet, bevor ich deine Antwort zu dem anderen Thread gelesen habe.

Du schreibst:


Der Ansatz lautet hier doch so:

$ [mm] F(s)=\bruch{As+B}{s^2+1}+\bruch{Cs+D}{s^2+2} [/mm] $

Also ist A=0, B=1, C=1 und D=-1?

Besten Dank!

Bezug
                        
Bezug
Anfangswertproblem Laplace Tra: Antwort
Status: (Antwort) fertig Status 
Datum: 18:42 Mi 01.12.2010
Autor: MathePower

Hallo M-Ti,

> zur 2. Aufgabe:
>  
> OK, das hatte ich gepostet, bevor ich deine Antwort zu dem
> anderen Thread gelesen habe.
>  
> Du schreibst:
>  
>
> Der Ansatz lautet hier doch so:
>  
> [mm]F(s)=\bruch{As+B}{s^2+1}+\bruch{Cs+D}{s^2+2}[/mm]
>  
> Also ist A=0, B=1, C=1 und D=-1?


A und B stimmen, C und D nicht.


>  
> Besten Dank!


Gruss
MathePower

Bezug
                                
Bezug
Anfangswertproblem Laplace Tra: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:00 Mi 01.12.2010
Autor: M-Ti

:-(

Also ich habe jetzt:

[mm] F(s)=\bruch{1}{(s^2+1)(s^2+2)}+\bruch{s+1}{s^2+2}=\bruch{As+B}{s^2+1}+\bruch{Cs+D}{s^2+2} [/mm]

aber weiss nicht wie ich da rangehen soll um das zu lösen...

Kannst du mir bitte nochmal helfen?

Bezug
                                        
Bezug
Anfangswertproblem Laplace Tra: Antwort
Status: (Antwort) fertig Status 
Datum: 19:09 Mi 01.12.2010
Autor: MathePower

Hallo M-Ti,

> :-(
>  
> Also ich habe jetzt:
>  
> [mm]F(s)=\bruch{1}{(s^2+1)(s^2+2)}+\bruch{s+1}{s^2+2}=\bruch{As+B}{s^2+1}+\bruch{Cs+D}{s^2+2}[/mm]
>  
> aber weiss nicht wie ich da rangehen soll um das zu
> lösen...
>  
> Kannst du mir bitte nochmal helfen?


Zerlege

[mm]\bruch{1}{(s^2+1)(s^2+2)}[/mm]

in Partialbrüche

[mm]\bruch{\alpha s+\beta}{s^2+1}+\bruch{\gamma*s+\delta}{s^2+2}[/mm]

Dann steht da:

[mm]\bruch{\alpha s+\beta}{s^2+1}+\bruch{\gamma*s+\delta}{s^2+2}+\bruch{s+1}{s^2+2}=\bruch{As+B}{s^2+1}+\bruch{Cs+D}{s^2+2}[/mm]

Koeffizientenvergleich ergibt

[mm]A=\alpha, \ B=\beta, \ C=\gamma+1, \ D=\delta+1[/mm]


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Laplace-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]