matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungAngeben der Normalform
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra / Vektorrechnung" - Angeben der Normalform
Angeben der Normalform < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Angeben der Normalform: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 01:31 Sa 16.10.2010
Autor: A_to_the_T

Aufgabe
Eine Gerade g schneidet die y-Achse im Punkt P(0/5). Der Steigungswinkel der Geraden g ist [mm] \alpha. [/mm] Geben sie eine Gleichung von g in Normalform und in der Form ax+by=c mit ganzzahligen a, b, c an für

a) [mm] \alpha [/mm] = 30°

Nabend!

Ich bins mal wieder. DIesmal habe ich aber keine Frage im eigentlichen Sinne, mich würde nur einmal interessieren, ob das was ich gerechnet habe richtig ist.

[mm] \alpha_{g} [/mm] = 30°

Für den Steigungswinkel der y-Achse, alse [mm] \alpha_{y}= [/mm] 90° Das habe ich durch aufzeichnen herausbekommen, bzw. ist die y-achse ja senkrecht zur x-achse und ja deswegen halt 90°

daraus ergibt sich für den Schnittwinkel [mm] \delta= \alpha_{y} [/mm] - [mm] \alpha_{g} [/mm]
= 60°

[mm] tan\delta \approx [/mm] 1,7 [mm] \approx [/mm] 2

Einsetzen in die Normalform : y=mx+c

5 = 2 * 0 +c
c=5

also: y=2x+5

Einsetzte in ax+by=c

2*0 + b * 5 = 5

b=1

also: 2x+y=5


Ganz lieben Dank schonmal und gute Nacht^^


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Angeben der Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 03:15 Sa 16.10.2010
Autor: Sax

Hi,

Drei Bemerkungen zu deiner Lösung :

1. Wenn du die Formel "Steigung der Geraden = Tangens des Winkels" benutzen willst, so ist dafür immer der Winkel, den die Gerade mit der (positiven) x-Achse einschließt, zu verwenden, also hier der Winkel 30°, nicht 60°.

2. Aus y = 2x + 5 kann doch niemels  2x + y = 5  folgen !
Dein Einsetzen in ax + by = c  ist falsch. Subtrahiere einfach in der ersten Gleichung auf beiden Seiten 2x und du hast das richtige Ergebnis.

3. Deine Rundung in der Tangens-Gleichung ist sehr großzügig.
Tatsächlich ist der Tangens von 30° (gleichseitiges Dreieck mit Höhe zeichnen) : tan 30° = [mm] \bruch{1}{\wurzel{3}} [/mm] (der Tangens von 60° ist der Kehrwert davon). Diese Zahl ist irrational und deshalb kann es keine ganzzahligen a, b, c geben wie in der Aufgabe gefordert, die Aufgabe ist in diesem Sinne unlösbar.

Gruß Sax.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]