matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesAnordnungsaxiom
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Sonstiges" - Anordnungsaxiom
Anordnungsaxiom < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anordnungsaxiom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:33 Sa 15.03.2008
Autor: Tyskie84

Aufgabe
Aus x<0 folgt [mm] x^{-1}<0 [/mm]

Hallo zusammen [winken]

Ich gehe meine ganzen Analysis Unterlagen durch und hab hier eine Frage. Mein Übungsleiter hat mir hierfür keine Punkte gegeben mit der Bemerkung das einige Folgerungspfeile nicht stimmen. Leider hat er nicht geschrieben welche nicht stimmen und ich den Fehler nicht entdecken kann.

Ich hab das folgendermaßen bewiesen.

Sei x<0 gegeben:
x<0 [mm] \gdw [/mm] 0>x [mm] \gdw [/mm] 0-x [mm] \in [/mm] P
[mm] \Rightarrow [/mm] -x [mm] \in [/mm] P
[mm] \Rightarrow [/mm] -x [mm] \cdot (x^{-1})^{2} \in [/mm] P (da [mm] (x^{-1})^{2} [/mm] immer positiv ist)
[mm] \Rightarrow [/mm] -(x [mm] \cdot x^{-1} \cdot x^{-1}) \in [/mm] P
[mm] \Rightarrow -(x^{-1}) \in [/mm] P
[mm] \Rightarrow -x^{-1} \in [/mm] P [mm] \gdw 0-x^{-1} \in [/mm] P [mm] \gdw 0>x^{-1} \gdw x^{-1}<0 [/mm]

Ich kann den (die) Fehler nicht finden.

[cap] Gruß

        
Bezug
Anordnungsaxiom: Antwort
Status: (Antwort) fertig Status 
Datum: 20:53 Sa 15.03.2008
Autor: angela.h.b.

Hallo,

etwas wirklich Fehlerhaftes kann ich auf den ersten Blick auch nicht erkennen.

Aber die Aufgabe stammt ja ganz vom Anfang des Semesters, als der Umgang mit den Axiomen geübt werden sollte.

Zu diesem Zeitpunkt kam es darauf an, wirklich jeden kleinen Schritt mit der Nummer des verwendeten Axioms/Sätzchens zu begründen.

Und vor diesem Hintergrund enthält

>  [mm]\Rightarrow[/mm] -x [mm]\cdot (x^{-1})^{2} \in[/mm] P (da [mm](x^{-1})^{2}[/mm]
> immer positiv ist)
>  [mm]\Rightarrow[/mm] -(x [mm]\cdot x^{-1} \cdot x^{-1}) \in[/mm] P

furchtbar viele Schritte auf einmal.

Ich weiß nicht, was genau Ihr zu dem Zeitpunkt zur Verfügung hattet, aber ungefähr so müßte es aussehen:

[mm] (-x)*(x^{-1})^2= [/mm] - [mm] (x*(x^{-1})^2)= [/mm] - [mm] ((x*x^{-1})*x^{-1})=-(1*x^{-1})= [/mm] - [mm] x^{-1}>0 [/mm]

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]