matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisAnstieg der Sekante
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Schul-Analysis" - Anstieg der Sekante
Anstieg der Sekante < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anstieg der Sekante: Frage
Status: (Frage) beantwortet Status 
Datum: 17:13 Sa 27.11.2004
Autor: Anja83

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo!
Gegeben ist die Funktion:
y=2x²+1

a)
P(x/...) sei ein beliebiger Punkt auf der Kurve.Ein Punkt Q liege um Delta x
Einheiten rechts von P. Bestimmt werden soll als Grenzprozess der Differentialquotient. Was geschieht mit den Punkten P und Q und der Sekante PQ?Was drückt der Differentialquotient aus und warum muss er hier noch die Variable x enthalten?

b) Bestimmt werden soll der Anstieg der Kurve an der Stelle x=5!

Ich weiß bei dieser Aufgabe einfach nicht weiter. Kann mir vielleicht jemand helfen?

        
Bezug
Anstieg der Sekante: Antwort
Status: (Antwort) fertig Status 
Datum: 18:30 Sa 27.11.2004
Autor: nitro1185

Hallo!!!

Der Differentialquotient ist im Prinzip durch den Limes(=Grenzwert) definiert!!!

[mm] \limes_{x \to x_{0}}\bruch{f(x)-f(x_{0})}{x-x_{0}} [/mm]

f(x)=2x²+1  und [mm] x_{0}=5 [/mm]

[mm] f(x_{0})=51 [/mm]   so jetzt musst du nur mehr einsetzen und den Grenzwert berechnen was ihr hoffentlich geübt habt!!!

MFG Daniel    Schönes WE noch


Bezug
        
Bezug
Anstieg der Sekante: Antwort
Status: (Antwort) fertig Status 
Datum: 01:52 So 28.11.2004
Autor: calvin82

Hallo

Also erstmal zu a)

Der Differentialquotient lässt sich im allgemeinen folgender maßen schreiben:

[mm] \limes_{h\rightarrow\zero} [/mm] (f(x+h)-f(x))/((x+h)-x)
h gegen null

wobei in deinem Fall (x+h,f(x+h)) Q entspricht und (x,f(x)) ist P.
(h ist dein delta x)
prinzipiell ist die stiegung einer sekante (oder irgend einer geraden) ja delta y durch delta x. (f(x+h)-f(x)) ist nun dein delta y und (x+h)-x bzw. h dein deleta x. für h gegen null wird die sekante nun zu einer tangente im punkt x die am graphen von [mm] y=2(x^2)+1 [/mm] anliegt. (h gegen null ist gleichbedeutend mit Q wird zu P)
diese tangente ist nun die best mögliche lineare annäherung des graphen in diesem punkt.
der differentialquotient ist ja nun sowas wie delta y durch delta x in diesem punkt. also genau die steigung der Tangente und gibt somit die steigung der ursprünglichen funktion in diesem punkt an.
x muss der diffquo noch enthalten weil er ja die steigung im punkt x angibt.
wenn man den diffquo nun als funktion fon x auffasst (x also genau wie bei f(x) laufen lässt) bekommt man eine funktion von x die die steigung der ursprünglichen funktion in jedem punkt x angibt.
Das ist dann die sog. Ableitung der ursprungsfunktion (Stammfunktion).

zu b)

Ich weiss leider nicht mehr genau wie man das mit dem diffquo macht :(
Aber normaler Weise bestimmt man einfach die Ableitung von f(x) und setzt den gewollten x Wert ein:
D(f(x)): y=4x
Also ist der Anstieg der Kurve im Punkt x=5: 4*5=20

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]