matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieAnzahl der Dezimalstellen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Zahlentheorie" - Anzahl der Dezimalstellen
Anzahl der Dezimalstellen < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anzahl der Dezimalstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:31 Do 08.03.2007
Autor: euklid

Aufgabe
Bestimme die Anzahl der Dezimalziffern der Anfang des Jahres 2007 groessten bekannten Primzahl [mm]M_p=2^p-1[/mm] mit [mm]p=32.582.657[/mm].

Hallo,

ich habe mir schon Folgendes ueberlegt, bin mir aber nicht sicher, ob meine Loesung korrekt ist.

Eine Zahl x, die man im Zahlensystem zur Basis $b$ darstellt, hat doch die Laenge [mm]l=\log_b(x)[/mm].

Dann kann ich doch einfach rechnen:
[mm]\log_{10}(2^{32582657}-1)=\log_{10}(2^{32582657})[/mm],
weil die letzte Stelle keine Null ist

[mm]\log_{10}(2^{32582657})=32582657\cdot\log_{10}(2)[/mm].

Ich habe da raus, dass es 9808357,... also 9808358 Dezimalstellen sind. Ist das schon alles oder muss ich noch etwas beachten?

Liebe Gruesse
euklid

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Anzahl der Dezimalstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:24 Do 08.03.2007
Autor: Ankh

Perfekt.

Aber:

> Eine Zahl x, die man im Zahlensystem zur Basis [mm]b[/mm] darstellt,
> hat doch die Laenge [mm]l=\log_b(x)[/mm].

Das stimmt nicht ganz, denn:
[mm] $log_{10}1 [/mm] = 0$
[mm] $log_{10}10 [/mm] = 1$
[mm] $log_{10}100 [/mm] = 2$
[mm] $log_{10}1000 [/mm] = 3$
...
Wenn du also nicht aufgerundet hättest, wäre dein Ergebnis falsch gewesen. Im Allgemeinen sollte man erst Eins addieren und dann abrunden.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]