matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKombinatorikAnzahl der Kombinationen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Kombinatorik" - Anzahl der Kombinationen
Anzahl der Kombinationen < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anzahl der Kombinationen: Korrektur/Berichtigung
Status: (Frage) überfällig Status 
Datum: 13:07 So 15.01.2012
Autor: siggi571

Aufgabe
Wir spielen Poker. Zwei Könige treffen auf zwei Asse. Wie hoch ist die Wahrscheinlichkeit, dass die Könige gewinnen, wenn man Straßen und Flushes nicht berücksichtigt

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: http://www.onlinemathe.de//forum/Kombinatorik-beim-Pokern

Hallo Community,

ich habe ein Problem bei der Berechnung einer Wahrscheinlichkeit und würde mich sehr freuen, wenn ihr mir hierbei ein bisschen helfen könntet. Aktuell ist mein Problem, ob mein Ansatz in folgender Situation und daraus folgend meine Rechnung richtig ist.

Es geht um die Preflop Wahrscheinlichkeit beim Texas Holdem von KK gegen AA, die Frage die ich mir hierbei stelle lautet: "In wie vielen Faellen gewinnt KK gegen AA".
Sonderregel ist, das keine Flushes und keine Straßen zaehlen (den Schritt würde ich gerne als naechstes berechnen, vorab soll dies aber nicht gelten)

Für diejenigen, die zwar Profis in Mathe sind, aber keine Ahnung von den Spielregeln haben: Es gibt 52 Karten, es gibt 4x Ass, 4x König....4x den 2er. Es gibt keine Joker.
Nachdem AA und KK ausgeteilt wurden, werden nun 5 Karten aufgedeckt, also praktisch "5 aus 48".

Mein Ansatz ist folgender: Anzahl hilfreicher Kombinationen/Alle Kombis (48 über 5)

Anzahl hilfreicher Kombinationen:
ich habe mir gedacht, meine hilfreichen Kombis sind in diesem Fall:
- Es kommt ein König aber kein Ass und kein offener Vierling
- Es kommen 2 Könige und höchstens ein Ass

Die Anzahl der Kombinationen mit 2 Königen und höchstens einem Ass habe bestimmt, indem ich (46 über 3)−(44 über 1) gerechnet habe.

Die Anzahl der Kombinationen mit einem König aber keinem Ass und keinem Vierling habe ich folgender Massen berechnet:
Anzahl aller Kombis mit 1K− Anzahl Kombis mit 2K (sonst waere es in meinen Augen doppelt gemobbelt) - Anzahl Kombis mit ∀− Anzahl Kombis mit A− Anzahl Kombis mit Vierling

Mit Zahlen:
(47 über 4)⋅2−15180⋅2−(45 über 2)⋅2−(2⋅(46 über 3)−1980)−11⋅2=296076

Unter dem Strich 29607648 über 5)=0,172

Also in 17,29% gewinnen die Könige.


In wie fern ist diese Rechnung richtig / falsch ?

Grüße
Siggi


        
Bezug
Anzahl der Kombinationen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Mi 15.02.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]