matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKombinatorikAnzahl der Möglichkeiten Käfer
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Kombinatorik" - Anzahl der Möglichkeiten Käfer
Anzahl der Möglichkeiten Käfer < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anzahl der Möglichkeiten Käfer: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:17 Sa 18.04.2015
Autor: Audin

Aufgabe
In einem Käfig befinden sich (unterscheidbare) männliche und weibliche Käfer mit blauen und grünen Flügeln.
Es werden vier Käfer entnommen, zwei Weibchen und zwei Männchen. Sowohl bei den Männchen als auch von den Weibchen werden jeweils eines mit blauen und eines mit grünen Flügeln entnommen. Es stehen fünf Kästchen bereit.
Wie viele Möglichkeiten gibt es, die Käfer auf die fünf Kästchen zu verteilen, wenn:

a) jedes Kästchen höchstens einen Käfer enthalten darf?
b) jedes Kästchen beliebig viele Käfer enthalten darf?


Also meine Überlegungen zu der Aufgabenstellung lauten momentan wie folgt.
Wir haben vier unterscheidbare Käfer. Ein männlichen mit grünen; ein männlichen mit blauen; ein weiblichen mit grünen und ein weiblichen mit blauen Flügeln. Desweiiteren sind auch leere Boxen erlaubt, immerhin haben wir nur 4-Käfer aber 5-Boxen. Eine Box bleibt also stets leer. Die Reihenfolge ist stehts wichtig. Es handelt sich also immer um ziehen mit Berücksichtung der Reihenfolge.
Dabei handelt es sich auch stets um ziehen ohne zurücklegen mit einer Ausnahme, die leere Menge. Sie ist das einzigste Element welches häufiger Auftreten darf.

a) In jedem Kästchen dürfen höchstens ein Käfer. Die vier Käfer auf 5-Boxen zu verteilen dürfte kein Problem sein. Das müssten 5! Möglichkeiten sein.
Zunähst hab ich für jeden Käfer 5-Möglichkeiten, dann 4; dann 3 usw.

Die Frage ist nun noch, was ist mit der anordnugn der leeren Boxen. Wieviele Möglichkeiten gibt es. Und genau da hab ich große Probleme. Müssten es nicht auch dort wieder 5!-Möglichkeiten sein?

Am Anfang hab ich 5-Boxen die alle leer sein können, dann nur noch vier, dann nur noch drei usw.

Dann hätte ich insgesamt 5!*5! Möglichkeiten.


b) Nun darf jedes Kästchen mehr als nur einen Käfer enthalten. Die Reihenfolge spielt eine Rolle. Es macht eine Unterschied ob die Käfer in der ersten oder in der letzten Box sind. Außerdem handelt es sich um ziehen ohne zurücklegen (wenn man mal von der leeren Menge absieht).

Es gibt folgende Fälle die eintreten können.

1) In jeder Box ist nur ein Käfer, also 5!
2) In einer Box sind 4-Käfer, das sind 5-Möglichkeiten
3) Anzahl der Möglichkeiten leere Boxen 5!
4) Es gibt in einer Box zwei Käfer.
5) Es gibt eine Box mit zwei und eine mit jeweils 1 Käfer (oder auch zwei mit einem) usw.

Erstmal würde ich aber gerne Wissen ob zumindest die a) stimmt. Ich tu mir super schwer hier ein passendes Modell zu finden.
Das Problem ist schon allein das ich vier Käfer auf 5-Boxen zuweisen muss.

Wären damit in meiner Urne nicht vier elmente und ich würde 5-mal ziehen?



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Anzahl der Möglichkeiten Käfer: Antwort
Status: (Antwort) fertig Status 
Datum: 22:17 Sa 18.04.2015
Autor: chrisno


> In einem Käfig befinden sich (unterscheidbare) männliche
> und weibliche Käfer mit blauen und grünen Flügeln.
> Es werden vier Käfer entnommen, zwei Weibchen und zwei
> Männchen. Sowohl bei den Männchen als auch von den
> Weibchen werden jeweils eines mit blauen und eines mit
> grünen Flügeln entnommen. Es stehen fünf Kästchen
> bereit.
> Wie viele Möglichkeiten gibt es, die Käfer auf die fünf
> Kästchen zu verteilen, wenn:
>  
> a) jedes Kästchen höchstens einen Käfer enthalten darf?
>  b) jedes Kästchen beliebig viele Käfer enthalten darf?
>  
> Also meine Überlegungen zu der Aufgabenstellung lauten
> momentan wie folgt.
>  Wir haben vier unterscheidbare Käfer. Ein männlichen mit
> grünen; ein männlichen mit blauen; ein weiblichen mit
> grünen und ein weiblichen mit blauen Flügeln.
> Desweiiteren sind auch leere Boxen erlaubt, immerhin haben
> wir nur 4-Käfer aber 5-Boxen. Eine Box bleibt also stets
> leer.

[ok]
Ich verstehe es so es gibt Käfer K1, K2, K3, K4 und Boxen B1, B2, B3, B4 und B5. Die sind also auch unterscheidbar, zum Beispiel, weil sie nebeneinander stehen und auch so stehen bleiben.

> Die Reihenfolge ist stehts wichtig.

Welche Reihenfolge, warum?

> Es handelt sich
> also immer um ziehen mit Berücksichtung der Reihenfolge.
> Dabei handelt es sich auch stets um ziehen ohne
> zurücklegen mit einer Ausnahme, die leere Menge. Sie ist
> das einzigste Element welches häufiger Auftreten darf.

Du verteilst die Käfer, wenn Du keinen mehr hast, ist Schluss. Es stimmt, dass es leere Kästchen gibt, aber wenn Du nun formal mit der leeren Menge argumentierst, dann muss auch der Rest formaler aufgeschrieben werden.

>  
> a) In jedem Kästchen dürfen höchstens ein Käfer. Die
> vier Käfer auf 5-Boxen zu verteilen dürfte kein Problem
> sein. Das müssten 5! Möglichkeiten sein.
>  Zunähst hab ich für jeden Käfer 5-Möglichkeiten, dann
> 4; dann 3 usw.

Für den letzten also zwei und daher passt es mit der Fakultät, weil nur noch ein Faktor 1 dazu kommt. Wie ist es mit 6 Kästchen?
Das Wort "jeden" irritiert mich. Wenn Du anfängst, die Käfer zu verteilen, musst Du einen nehmen. Dann kannst Du Dir ein Kästchen aussuchen und ihn hineinstecken. Dieser Käfer ist dann weg und Du nimmst den nächsten. Es stimmt, dass es egal ist, mit welchem Käfer Du anfängst. Das Ergebnis ist aber immer das Gleiche.


>  
> Die Frage ist nun noch, was ist mit der anordnugn der
> leeren Boxen. Wieviele Möglichkeiten gibt es. Und genau da
> hab ich große Probleme. Müssten es nicht auch dort wieder
> 5!-Möglichkeiten sein?
>  
> Am Anfang hab ich 5-Boxen die alle leer sein können, dann
> nur noch vier, dann nur noch drei usw.
>  
> Dann hätte ich insgesamt 5!*5! Möglichkeiten.

Du kannst nicht zuerst die Käfer auf die Boxen verteilen und danach wieder die Boxen verteilen. Welche Box frei ist, ergibt sich aus der Verteilung der Käfer.


>  
>
> b) Nun darf jedes Kästchen mehr als nur einen Käfer
> enthalten. Die Reihenfolge spielt eine Rolle. Es macht eine
> Unterschied ob die Käfer in der ersten oder in der letzten
> Box sind. Außerdem handelt es sich um ziehen ohne
> zurücklegen (wenn man mal von der leeren Menge absieht).
>  
> Es gibt folgende Fälle die eintreten können.
>  
> 1) In jeder Box ist nur ein Käfer, also 5!

Möglichkeiten. (eine leere Box)

>  2) In einer Box sind 4-Käfer, das sind 5-Möglichkeiten

[ok] (4 leere Boxen), aber ich ziehe ein systematischeres Vorgehen vor. Dann wären nun die Fälle mit zwei leeren Boxen dran gewesen.

>  3) Anzahl der Möglichkeiten leere Boxen 5!

Dies passt nun gar nicht. Was meinst Du damit? Das scheint mit Deinem Gedanken (5!*5!) zu tun zu haben.

>  4) Es gibt in einer Box zwei Käfer.

[ok] (zwei leere Boxen)

>  5) Es gibt eine Box mit zwei und eine mit jeweils 1 Käfer
> (oder auch zwei mit einem) usw.

(drei leere Boxen mit Aufteilung in Unterfälle)

>  
> Erstmal würde ich aber gerne Wissen ob zumindest die a)
> stimmt. Ich tu mir super schwer hier ein passendes Modell
> zu finden.
>  Das Problem ist schon allein das ich vier Käfer auf
> 5-Boxen zuweisen muss.
>  
> Wären damit in meiner Urne nicht vier elmente und ich
> würde 5-mal ziehen?

Zieh die Boxen aus der Urne. Für Käfer 1 ziehe ich eine Box. Dann für Käfer 2, ....

>  
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Anzahl der Möglichkeiten Käfer: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:24 So 19.04.2015
Autor: Audin


> > In einem Käfig befinden sich (unterscheidbare) männliche
> > und weibliche Käfer mit blauen und grünen Flügeln.
> > Es werden vier Käfer entnommen, zwei Weibchen und zwei
> > Männchen. Sowohl bei den Männchen als auch von den
> > Weibchen werden jeweils eines mit blauen und eines mit
> > grünen Flügeln entnommen. Es stehen fünf Kästchen
> > bereit.
> > Wie viele Möglichkeiten gibt es, die Käfer auf die fünf
> > Kästchen zu verteilen, wenn:
>  >  
> > a) jedes Kästchen höchstens einen Käfer enthalten darf?
>  >  b) jedes Kästchen beliebig viele Käfer enthalten
> darf?
>  >  
> > Also meine Überlegungen zu der Aufgabenstellung lauten
> > momentan wie folgt.
>  >  Wir haben vier unterscheidbare Käfer. Ein männlichen
> mit
> > grünen; ein männlichen mit blauen; ein weiblichen mit
> > grünen und ein weiblichen mit blauen Flügeln.
> > Desweiiteren sind auch leere Boxen erlaubt, immerhin haben
> > wir nur 4-Käfer aber 5-Boxen. Eine Box bleibt also stets
> > leer.
> [ok]
>  Ich verstehe es so es gibt Käfer K1, K2, K3, K4 und Boxen
> B1, B2, B3, B4 und B5. Die sind also auch unterscheidbar,
> zum Beispiel, weil sie nebeneinander stehen und auch so
> stehen bleiben.
>  > Die Reihenfolge ist stehts wichtig.

> Welche Reihenfolge, warum?

Damit meinte ich die Reihenfolge wie ich die Käfer in die Boxen packe. Es macht einen Unterschied ob ich in der ersten Box B1, den Käfer K1 oder K2 reinpacke. Immerhin sind die Käfer ja unterscheidbar.

> > Es handelt sich
> > also immer um ziehen mit Berücksichtung der Reihenfolge.
> > Dabei handelt es sich auch stets um ziehen ohne
> > zurücklegen mit einer Ausnahme, die leere Menge. Sie ist
> > das einzigste Element welches häufiger Auftreten darf.
>  Du verteilst die Käfer, wenn Du keinen mehr hast, ist
> Schluss. Es stimmt, dass es leere Kästchen gibt, aber wenn
> Du nun formal mit der leeren Menge argumentierst, dann muss
> auch der Rest formaler aufgeschrieben werden.
> >  

> > a) In jedem Kästchen dürfen höchstens ein Käfer. Die
> > vier Käfer auf 5-Boxen zu verteilen dürfte kein Problem
> > sein. Das müssten 5! Möglichkeiten sein.
>  >  Zunähst hab ich für jeden Käfer 5-Möglichkeiten,
> dann
> > 4; dann 3 usw.
>  Für den letzten also zwei und daher passt es mit der
> Fakultät, weil nur noch ein Faktor 1 dazu kommt. Wie ist
> es mit 6 Kästchen?
>  Das Wort "jeden" irritiert mich. Wenn Du anfängst, die
> Käfer zu verteilen, musst Du einen nehmen. Dann kannst Du
> Dir ein Kästchen aussuchen und ihn hineinstecken. Dieser
> Käfer ist dann weg und Du nimmst den nächsten.

Stimmt das Wort jeden 5-Möglichkeiten klingt in dem Zusammenhang echt unpassend bzw. es ist in dem Kontext falsch. Ich habe es aber genauso gemeint wie du geschrieben hast.

> Es stimmt,
> dass es egal ist, mit welchem Käfer Du anfängst. Das
> Ergebnis ist aber immer das Gleiche.
>  
>
> >  

> > Die Frage ist nun noch, was ist mit der anordnugn der
> > leeren Boxen. Wieviele Möglichkeiten gibt es. Und genau da
> > hab ich große Probleme. Müssten es nicht auch dort wieder
> > 5!-Möglichkeiten sein?
>  >  
> > Am Anfang hab ich 5-Boxen die alle leer sein können, dann
> > nur noch vier, dann nur noch drei usw.
>  >  
> > Dann hätte ich insgesamt 5!*5! Möglichkeiten.
>  Du kannst nicht zuerst die Käfer auf die Boxen verteilen
> und danach wieder die Boxen verteilen. Welche Box frei ist,
> ergibt sich aus der Verteilung der Käfer.

Also sind es einfach 5!-Möglichkeiten? Für mich ist noch nicht ganz schlüssig warum sich aus der Verteilung der Käfer wirklich die leeren Boxen ergeben. Denn angenommen ich packe in der ersten Box keinen Käfer hinein. Dann habe ich für die zweite Box immer noch 5-Möglichkeiten. Ich kann keinen Käfer hineinpacken oder aber auch einen der 4Käfer. Die leere Box kann ja im Gegensatz zu den Käfern auch häufiger vorkommen.
Wenn dann müsste ich ja schon die Möglichkeiten berechnen dafür das in jeder Box genau ein Käfer ist. Die anzahl der Möglichkeiten das in Box 1 und 2 ein Käfer ist. Die Anzahl der Möglichkeiten das in Box 2 und 3 ein Käfer ist usw.
Es sind in jedem Fall mehr als 5! Möglichkeiten würde ich sagen



>
> >  

> >
> > b) Nun darf jedes Kästchen mehr als nur einen Käfer
> > enthalten. Die Reihenfolge spielt eine Rolle. Es macht eine
> > Unterschied ob die Käfer in der ersten oder in der letzten
> > Box sind. Außerdem handelt es sich um ziehen ohne
> > zurücklegen (wenn man mal von der leeren Menge absieht).
>  >  
> > Es gibt folgende Fälle die eintreten können.
>  >  
> > 1) In jeder Box ist nur ein Käfer, also 5!
>  Möglichkeiten. (eine leere Box)
>  
> >  2) In einer Box sind 4-Käfer, das sind 5-Möglichkeiten

>  [ok] (4 leere Boxen), aber ich ziehe ein systematischeres
> Vorgehen vor. Dann wären nun die Fälle mit zwei leeren
> Boxen dran gewesen.
>  >  3) Anzahl der Möglichkeiten leere Boxen 5!
>  Dies passt nun gar nicht. Was meinst Du damit? Das scheint
> mit Deinem Gedanken (5!*5!) zu tun zu haben.
>  >  4) Es gibt in einer Box zwei Käfer.
>  [ok] (zwei leere Boxen)
>  >  5) Es gibt eine Box mit zwei und eine mit jeweils 1
> Käfer
> > (oder auch zwei mit einem) usw.
>  (drei leere Boxen mit Aufteilung in Unterfälle)
>  >  
> > Erstmal würde ich aber gerne Wissen ob zumindest die a)
> > stimmt. Ich tu mir super schwer hier ein passendes Modell
> > zu finden.
>  >  Das Problem ist schon allein das ich vier Käfer auf
> > 5-Boxen zuweisen muss.
>  >  
> > Wären damit in meiner Urne nicht vier elmente und ich
> > würde 5-mal ziehen?
>  Zieh die Boxen aus der Urne. Für Käfer 1 ziehe ich eine
> Box. Dann für Käfer 2, ....
>  >  
> >
> >
> > Ich habe diese Frage in keinem Forum auf anderen
> > Internetseiten gestellt.
>  


Bezug
                        
Bezug
Anzahl der Möglichkeiten Käfer: Antwort
Status: (Antwort) fertig Status 
Datum: 18:43 So 19.04.2015
Autor: chrisno


> Also sind es einfach 5!-Möglichkeiten? Für mich ist noch nicht ganz schlüssig warum sich aus der Verteilung der Käfer wirklich die leeren Boxen ergeben. Denn angenommen ich packe in der ersten Box keinen Käfer hinein.

Soweit ok.

> Dann habe ich für die zweite Box immer noch 5-Möglichkeiten.

Hast Du nicht. Dies ist noch Aufgabenteil a. b kommt erst später.

> Ich kann keinen Käfer hineinpacken oder aber auch einen der 4Käfer.

nicht bei a

> Die leere Box kann ja im Gegensatz zu den Käfern auch häufiger vorkommen.

nicht bei a

> Wenn dann müsste ich ja schon die Möglichkeiten berechnen dafür das in jeder Box genau ein Käfer ist.

Das geht ja nicht, eine muss ja frei bleiben.

> Die anzahl der Möglichkeiten das in Box 1 und 2 ein Käfer ist. Die Anzahl der Möglichkeiten das in Box 2 und 3 ein Käfer ist usw.
> Es sind in jedem Fall mehr als 5! Möglichkeiten würde ich sagen

im Aufgabenteil b: ja.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 2m 6. schokoschnecke
UAnaRn/Extremwerte mit Nebenbedingung
Status vor 23m 10. Maxi1995
UAnaR1/Reaktion - erwünscht
Status vor 2h 47m 2. fred97
DiffGlGew/Lösung der DGL bestimmen
Status vor 2h 52m 2. fred97
SLinA/Eigenvektor bestimmen
Status vor 9h 12m 8. Gonozal_IX
UAnaR1Funk/L Beweis ohne Logarithmusdef.
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]