matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKombinatorikAnzahl der Partitionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Kombinatorik" - Anzahl der Partitionen
Anzahl der Partitionen < Kombinatorik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anzahl der Partitionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:08 Di 03.01.2012
Autor: Sin777

Aufgabe
Die Anzahl der Partitionen einer natürlichen Zahl n in Summanden, die alle gerade sind, ist gleich der Anzahl der Partitionen von n/2.

Ich komme mit dieser Aufgabe nicht ganz klar. Zunächst einmal sollte ich wohl davon ausgehen, dass n gerade ist, denn Partitionen sind ja nur für natürliche Zahlen (inklusive Null) definiert und dann macht n/2 keinen sinn. Also ist n=2k. Dann ist zu zeigen, dass

p*(2k)=p(k) mit p* ist die Anzahl der Partitionen die nur gerade Summanden enhält.

Ich habe schon die ganze zeit mit induktion rumprobiert aber finde einfach keinen Industionsschritt.

Hat vielleicht jemand einen Hinweis für mich?


Vielen dank im voraus


        
Bezug
Anzahl der Partitionen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:41 Di 03.01.2012
Autor: HJKweseleit

Wenn die Summanden alle gerade sind, ist auch n gerade.

Stelle dir irgendeine Summe gerader Summanden vor, die n ergibt. Klammere nun 2 aus. In der Klammer steht nun eine beliebige Partition, die gerade n/2 gibt.
Hast du umgekehrt eine Partition, die n/2 ergibt, schreibe eine Klammer darum und setze den Faktor 2 davor. Dann hat das Ganze den Wert n. Löse nun die Klammer auf: Du erhältst lauter gerade Summanden, also eine Partition von n.
Zu jeweils 2 verschiedenen Partitionen von n erhältst du 2 verschiedene von n/2 und umgekehrt. Also ist die Anzahl der Möglichkeiten gleich.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]