matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationApproximation Treppenfunktion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integration" - Approximation Treppenfunktion
Approximation Treppenfunktion < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Approximation Treppenfunktion: Tipp
Status: (Frage) überfällig Status 
Datum: 19:19 Mo 01.02.2010
Autor: Olga1234

Aufgabe
f(x) = [mm] \bruch{1}{x} [/mm]
[mm] f_{n}(x) [/mm] = [mm] \summe_{k=0}^{n-1} \bruch{1}{x^{n}} [/mm] ( [mm] x^{\bruch{k+1}{n} }- x^{\bruch{k}{n}} [/mm] )

Ich will zeigen, dass [mm] f_{n} [/mm] gleichmäßig gegen f konvergiert.

Dafür muss ich ja zeigen, dass
[mm] \limes_{n\rightarrow\infty} \parallel f_{n} [/mm] - f [mm] \parallel [/mm] = 0

Das bedeutet:

[mm] sup_{x \in [a,b]} [/mm] |  [mm] f_{n} [/mm] - f |
= [mm] sup_{x \in [a,b]} [/mm] | [mm] (\bruch{1}{x^{n}} [/mm] ( [mm] x^{\bruch{k+1}{n} }- x^{\bruch{k}{n}} [/mm] )) - [mm] \bruch{1}{x}| [/mm]
= [mm] sup_{x \in [a,b]} [/mm] | [mm] (x^{\bruch{1}{n}}-1) [/mm] - [mm] \bruch{1}{x}| [/mm]
= ???

kann mir jemand den nächsten schritt verraten?
ist der ansatz denn richtig?

        
Bezug
Approximation Treppenfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:29 Mo 01.02.2010
Autor: steppenhahn

Hallo Olga,

> f(x) = [mm]\bruch{1}{x}[/mm]
>  [mm]f_{n}(x)[/mm] = [mm]\summe_{k=0}^{n-1} \bruch{1}{x^{n}}[/mm] (
> [mm]x^{\bruch{k+1}{n} }- x^{\bruch{k}{n}}[/mm] )
>  Ich will zeigen, dass [mm]f_{n}[/mm] gleichmäßig gegen f
> konvergiert.

Bist du dir sicher, dass du das richtig konstruiert hast?
So geht das nämlich alles eher gegen 0.

Wie lautete denn dir ursprüngliche Aufgabe mit den Treppenfunktionen?

Grüße,
Stefan

Bezug
                
Bezug
Approximation Treppenfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:43 Mo 01.02.2010
Autor: Olga1234

die aufgabe war [mm] \integral_{0}^{x}{\bruch{1}{x} dx} [/mm] mittels treppenfunktionen zu approximieren, was ich schon getan habe. am ende kommt = ln x raus.
allerdings muss ich noch zeigen, dass die gefundene treppenfunktionen [mm] f_{n} [/mm] gegen f konvergiert um zu zeigen, dass [mm] f_{n} [/mm] f approximiert.

allerdings ist da wirklich ein kleiner fehler.
es muss heißen

[mm] \parallel [/mm] fn - f [mm] \parallel [/mm] = sup | fn- f | = sup | [mm] \bruch{1}{x_{n}} [/mm] - [mm] \bruch{1}{x}| [/mm]

Bezug
        
Bezug
Approximation Treppenfunktion: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Mi 03.02.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]