matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteApproximation von Eigenvektore
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Eigenwerte" - Approximation von Eigenvektore
Approximation von Eigenvektore < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Approximation von Eigenvektore: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:33 Mo 16.06.2008
Autor: mathmetzsch

Aufgabe
Sei A eine komplexe nxn-Matrix mit n verschiedenen Eigenwerten [mm] \lambda_{1},...,\lambda_{n}. [/mm] Außerdem gelte [mm] |\lambda_{1}|>|\lambda_{j}|. [/mm] Zeige, dass für "fast alle" Vektoren [mm] x\in\IC^{n} [/mm] die durch [mm] x_{k}=\lambda_{1}^{-k}A^{k}x [/mm] gegebene Folge gegen einen Eigenvektor y konvergiert, und beschreibe unter welchen Bedingungen dies genau der Fall ist.  

Hallo Leute,

ihr lest das Problem. Hat jemand eine Idee wie man da herangehen könnte. Ich probiere mich jetzt schon geraume Zeit daran und komme auf nichts Brauchbares. Ich bin für jede Hilfe dankbar.

Grüße
Daniel

        
Bezug
Approximation von Eigenvektore: Antwort
Status: (Antwort) fertig Status 
Datum: 12:53 Mo 16.06.2008
Autor: fred97

Da A n verschiedene Eigenwerte besitzt, existiert eine Basis b1, ..., bn des [mm] C^n, [/mm]
wobei  bj Eigenvektor zum Eigenwert lambdaj ist.

Sei x in [mm] C^n. [/mm] Stelle x als Linearkombination diser Eigenvektoren dar und betrachte dann die mit diesem x gebildete Folge xk.

Du wirst sehen: diese Folge konvergiert. Du kannst dann auch ablesen, wann diese Folge gegen einen Eigenvektor konvergiert.


FRED

Bezug
                
Bezug
Approximation von Eigenvektore: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:21 Di 17.06.2008
Autor: mathmetzsch

Hallo Fred,

wie sieht denn diese Linearkombination aus. Hätte jetzt diese Idee:

[mm] x_{k}=\summe_{i=1}^{n}\alpha_{i}\lambda_{i}^{k}v_{i}. [/mm]

Wenn ich die Summe dann etwas umschreibe, kann ich da sehr schnell was ablesen, aber ist die LK so richtig?

Grüße, Daniel

Bezug
                        
Bezug
Approximation von Eigenvektore: Antwort
Status: (Antwort) fertig Status 
Datum: 09:54 Di 17.06.2008
Autor: fred97

Wenn Du mit vi die obigen Basisvektoren meinst (von denen ich sprach), so mußt Du die rechte Seite von

$ [mm] x_{k}=\summe_{i=1}^{n}\alpha_{i}\lambda_{i}^{k}v_{i}. [/mm] $

noch durch lambda1 dividieren, dann erhälst Du die Folge xk aus der Aufgabe.

Was passiert jetzt für k gegen unendlich ?

FRED

Bezug
                                
Bezug
Approximation von Eigenvektore: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 11:21 Di 17.06.2008
Autor: mathmetzsch

Na ja, diese Umformung ist sicherlich erlaubt:

[mm] x_{k}=\summe_{i=1}^{n}\alpha_{i}\lambda_{i}^{k}v_{i}=\lambda_{1}^{k}(\alpha_{1}v_{1}+\summe_{i=2}^{n}\alpha_{i}v_{i}\bruch{\lambda_{i}^{k}}{\lambda_{1}^{k}}). [/mm] Für k gegen Unendlich konvergiert das gegen den Nullvektor, da [mm] \bruch{\lambda_{i}^{k}}{\lambda_{1}^{k}} [/mm] eine geometrische Folge ist.

Ist also der Startvektor [mm] x_{0} [/mm] allgemein gewählt [mm] (\alpha_{1}\not=0), [/mm] so konvergieren die Vektoren [mm] \bruch{x_{k}}{\lambda_{1}^{k}} [/mm] gegen  [mm] \alpha_{1}v_{1}, [/mm] also bis auf Normierung gegen den Eigenvektor [mm] v_{1}. [/mm]

Stimmt das so? Danke! Grüße, Daniel

Bezug
                                        
Bezug
Approximation von Eigenvektore: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:55 Di 17.06.2008
Autor: fred97

So in etwa. Beachte aber, dass Dein xk nicht das aus der Aufganenstellung ist.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]