matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenAsymptotische Gleichheit
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Asymptotische Gleichheit
Asymptotische Gleichheit < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Asymptotische Gleichheit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:45 Mo 02.03.2009
Autor: daisa

Aufgabe
Zwei reellwertige Funktionen f und g, welche auf Teilmengen von [mm] \IR [/mm] definiert sind, heissen asymptotisch gleich falls
[mm] \exists [/mm] R [mm] \in \IR: \bruch{f}{g} [/mm] oder [mm] \bruch{g}{f} [/mm] existiert für alle x [mm] \ge [/mm] R und
[mm] \limes_{x\rightarrow\infty} \bruch{f}{g} [/mm] = 1 bzw. [mm] \limes_{x\rightarrow\infty} \bruch{g}{f} [/mm] = 1.
Existiert für die folgenden Funktionen [mm] f_{i} [/mm] ein Element [mm] cx^{n} [/mm] aus [mm] \{cx^{n} : n \in \IN, c \in \IR\}, [/mm] so dass [mm] f_{i} [/mm] und das Monom [mm] cx^{n} [/mm] asymptotisch gleich sind? Falls ja, geben Sie dieses [mm] cx^{n} [/mm] an.

f(x) := [mm] \wurzel{(e^{-x} + sin(2x) + x)} [/mm]

Hallo zusammen

Ich habe mir mal folgendes überlegt:
[mm] \bruch{f}{g} [/mm] = [mm] \bruch{\wurzel{(e^{-x} + sin(2x) + x)}}{cx^{n}} [/mm] = [mm] \wurzel{\bruch{\(e^{-x} + sin(2x) + x)}{c^{2}x^{2n}}} [/mm] = [mm] \wurzel{\bruch{1}{e^{x}c^{2}x^{2n}} + \bruch{sin(2x)}{c^{2}x^{2n}} + \bruch{1}{c^{2}x^{2n-1}}} [/mm]

Also wenn ich jetzt mal den Limes laufen lasse, dann glaube ich, dass es null gibt, da alle Summanden null geben. Ich bin mir aber überhaupt nicht sicher. Was meint ihr dazu?

lg, daisa

        
Bezug
Asymptotische Gleichheit: Antwort
Status: (Antwort) fertig Status 
Datum: 19:49 Mo 02.03.2009
Autor: fred97

Alles richtig erkannt

FRED

Bezug
                
Bezug
Asymptotische Gleichheit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:57 Mo 02.03.2009
Autor: daisa

Wow, du bist schnell.. :-)
Also dann finde ich kein c und n, so dass der Limes eins ergibt?
Wie kann ich das noch schön aufschreiben?
lg, daisa

Bezug
                        
Bezug
Asymptotische Gleichheit: Grenzwerte ermitteln
Status: (Antwort) fertig Status 
Datum: 20:07 Mo 02.03.2009
Autor: Loddar

Hallo daisa!


Berechne von allen 3 Brüchen unter der Wurzel den Grenzwert. Da diese Grenzwerte jeweils unabhängig von $c_$ und $n_$ immer Null ergeben, ist Deine Behauptung gezeigt.


Gruß
Loddar


Bezug
                                
Bezug
Asymptotische Gleichheit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:10 Mo 02.03.2009
Autor: daisa

Okay, klar..
Super, danke!

Bezug
                                        
Bezug
Asymptotische Gleichheit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:13 Mo 02.03.2009
Autor: daisa

also du meinst, dass der Limes unter dem Bruch immer unendlich ergibt und so der Bruch null.. aber schon klar!
danke nochmals..
lg, daisa

Bezug
                                
Bezug
Asymptotische Gleichheit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:25 Mo 02.03.2009
Autor: Steffi21

Hallo Loddar, ich habe mir jetzt mal den Fall n=0 überlegt, der 3. Summand lautet dann [mm] \bruch{x}{c^{2}} [/mm] der läuft doch aber für x gegen unendlich nicht gegen Null sondern gegen unendlich, was mache ich falsch? Steffi

Bezug
                                        
Bezug
Asymptotische Gleichheit: n ungleich 0
Status: (Antwort) fertig Status 
Datum: 20:31 Mo 02.03.2009
Autor: Loddar

Hallo Steffi!


Einen Moment dachte ich schon: jetzt wurde ich erwischt! ;-)

Für diesen Spezialfall hast Du Recht: der Grenzwert ergibt dann nicht Null.

Allerdings gilt gemäß Aufgabenstellung $n \ [mm] \in [/mm] \ [mm] \IN$ [/mm] , was nach meiner Interpretation $n \ [mm] \red{\not=} [/mm] \ 0$ bedeutet.

Ich weiß, dies wird teilweise anders interpretiert, indem man sagt:
[mm] $$\IN [/mm] \ := \ [mm] \left\{ \ \red{0} \ ; 1 \ ; 2 \ ; 3 \ ; ... \right\}$$ [/mm]
Dies kenne ich jedoch unter [mm] $\IN_{\red{0}} [/mm] \ [mm] \supset [/mm] \ [mm] \IN$ [/mm] .


Gruß
Loddar


Bezug
                                                
Bezug
Asymptotische Gleichheit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:39 Mo 02.03.2009
Autor: Steffi21

Danke Loddar, immer diese Sorgen mit der Null, Steffi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]