matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenAuf konvergenz untersuchen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Auf konvergenz untersuchen
Auf konvergenz untersuchen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Auf konvergenz untersuchen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:10 So 04.11.2007
Autor: Paul1985

Aufgabe
Untersuchen Sie die Folgen auf konvergenz und begründen Sie:

1.) [mm] a_{n} [/mm] = [mm] \bruch{1}{\wurzel{n}} [/mm]
2.) [mm] a_{n} [/mm] = [mm] (-1)^n [/mm]

[mm] n\in\\IN [/mm]

Hallo :)

mit google hab ich herausgefunden konvergent = [...] bedeutet allgemein Annäherung [...]

nun habe ich für n die Werte 1 , 101, 1000 eingesetzt um zu schauen was passiert.

bei 1.) verläuft der Wert gegen 0
bei 2.) wechselt es zwischen -1 und 1.

D.h. 1.) ist konvergent, da für große n das Ergebnis gegen 0 geht
2.) ist nicht konvergent, da mir nur -1 und 1 als Lösung(smenge?) haben.

sollte dies richtig sein,
wie schreibe ich es bei der 1.) formal auf?

[mm] a_{n} [/mm] = [mm] \limes_{n\rightarrow\0} [/mm] = [mm] \bruch{1}{\wurzel{n}} [/mm]  ?


Gruß und danke :)

        
Bezug
Auf konvergenz untersuchen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:35 So 04.11.2007
Autor: Dave11


> Untersuchen Sie die Folgen auf konvergenz und begründen
> Sie:
>  
> 1.) [mm]a_{n}[/mm] = [mm]\bruch{1}{\wurzel{n}}[/mm]
>  2.) [mm]a_{n}[/mm] = [mm](-1)^n[/mm]
>  
> [mm]n\in\\IN[/mm]
>  Hallo :)
>  
> mit google hab ich herausgefunden konvergent = [...]
> bedeutet allgemein Annäherung [...]
>  
> nun habe ich für n die Werte 1 , 101, 1000 eingesetzt um zu
> schauen was passiert.

> bei 1.) verläuft der Wert gegen 0
>  bei 2.) wechselt es zwischen -1 und 1.

> D.h. 1.) ist konvergent, da für große n das Ergebnis gegen
> 0 geht

Richtig

>  2.) ist nicht konvergent, da mir nur -1 und 1 als
> Lösung(smenge?) haben.

Richtig, mann sagt dazu divergent.
  

> sollte dies richtig sein,
>  wie schreibe ich es bei der 1.) formal auf?
>  

Konvergiert [mm] (a_n) [/mm] gegen a,so nennt man a den Grenzwert oder den Limes der Folge und schreibt

[mm] \limes_{n\rightarrow\infty}a_n=a [/mm]

[mm] \Rightarrow \limes_{n\rightarrow\infty}a_n=0 [/mm]


MFG Dave


Bezug
                
Bezug
Auf konvergenz untersuchen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:39 So 04.11.2007
Autor: Paul1985

Danke Dave für Deine Hilfe

okey, meine 1 ist also divigent, da sie gegen 0 läuft.
gegen was läuft aber meine 2 ?

Ferner habe ich hier noch 2 Aufgaben. Die eine läuft mir gegen unendlich, die andere gegen 1.
Bei letzerer, je höher n ist , desto mehr gehe ich Richtung 0.99999 ....
wie nenne ich diese 2 dann?


Bezug
                        
Bezug
Auf konvergenz untersuchen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:53 So 04.11.2007
Autor: Dave11


> Danke Dave für Deine Hilfe
>  
> okey, meine 1 ist also divigent, da sie gegen 0 läuft.
>  gegen was läuft aber meine 2 ?

Nein , bei aufgabe 1)  [mm] \limes_{n\rightarrow\infty}\bruch{1}{\wurzel{n}}=0 [/mm] ,also konvergent gegen 0

Bei Aufgabe 2) schreibst du einfach Die Folge [mm] a_n=(-1)^n [/mm] divergiert.




>  
> Ferner habe ich hier noch 2 Aufgaben. Die eine läuft mir
> gegen unendlich, die andere gegen 1.
> Bei letzerer, je höher n ist , desto mehr gehe ich Richtung
> 0.99999 ....
> wie nenne ich diese 2 dann?
>  

Bei so einer  die gegen unendlich geht schreibst du
[mm] \limes_{n\rightarrow\infty}a_n=\infty [/mm] , also divergent.

Die andere dann [mm] \limes_{n\rightarrow\infty}a_n=1 [/mm] ,also konvergent

Mann sagt nur konvergent wenn es einen Grenzwert gibt.

MFG Dave

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]