matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Aufg. verstehen Gym10 S189, 3
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Mathe Klassen 8-10" - Aufg. verstehen Gym10 S189, 3
Aufg. verstehen Gym10 S189, 3 < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufg. verstehen Gym10 S189, 3: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:44 So 08.04.2012
Autor: Giraffe

Aufgabe
Berechne die Ableitungen der Funktionen [mm] f_n(x)=x^n [/mm] für
n= 2, 3, 4, 5 und 6
In welchem Verhältnis stehen die Steigungen dieser Funktionen jeweils an den Stellen
x=0,5
X=1
X=2

Hallo,
ich habe überhaupt keine Ahnung was ich miteinander vgl. soll.

Die Steig. an der Stelle x=1 von der Fkt. 2x
vgl. mit
der Steig. an der Stelle x=1 von der Fkt. [mm] 3x^2 [/mm]

oder z.B.
Die Steig. an der Stelle x=1 von der Fkt. 2x
vgl. mit
der Steig. an der Stelle x=2 der gleichen Fkt.

Ich habe einfach mal gemacht u. dachte, das wird sich sicher beim Machen klären,
aber nix.
So sieht nix aus:
[Dateianhang nicht öffentlich]
oder sollen diese Ableitungs-Fkt. mit den aufgeleiteten Fkt. vgl. werden, bzw. deren Steig.

Ich hoffe einer von euch hat da Durchblick u. lässt mich mit durchblicken.
Ach, so, das ist vllt. hilfreich zu wissen, die Aufg. ist eingebunden in das Thema Differential-Rechng. (Fkt. u. ihre Ableitungen).

Grüße von
Sabine




Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Aufg. verstehen Gym10 S189, 3: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:44 Mo 09.04.2012
Autor: Marcel

Hallo Sabine,

> Berechne die Ableitungen der Funktionen [mm]f_n(x)=x^n[/mm] für
> n= 2, 3, 4, 5 und 6
>  In welchem Verhältnis stehen die Steigungen dieser
> Funktionen jeweils an den Stellen
>  x=0,5
>  X=1
>  X=2
>  Hallo,
>  ich habe überhaupt keine Ahnung was ich miteinander vgl.
> soll.

zu Deiner Beruhigung:
Aus der Aufgabenstellung geht das meiner Ansicht nach auch gar nicht hervor. Prinzipiell kann es sogar gemeint sein, dass man alle Vergleiche, die Du durchführst, machen soll. Aber die Aufgabenformulierung ist in dieser Form einfach SCHLECHT und meines Erachtens nach alles andere als präzise:
Auch mir ist nicht klar, ob man jeweils für ein [mm] $f_n$ [/mm] die Funktionswerte der entsprechenden Stellen miteinander vergleichen soll, oder für eine feste Stelle dann die Funktionswerte der unterschiedlichen Funktionen. Irgendwie kann auch beides Sinn machen.

Aber wie dem auch sei: Einen tieferen Sinn dabei, diese Vergleiche durchzuführen (egal, in welchem Sinne das nun gemeint ist), sehe ich nun auch nicht wirklich. Bei (je) einer einzelnen Funktion [mm] $f_n$ [/mm] würde man vll. ein wenig sehen, wie sich "die Steigung" von Stelle zu Stelle verändert - das scheint mir schon Sinn zu machen. Aber auch bei der anderen Vergleichsweise wäre im Ergebnis ein ähnlicher Sinn interpretierbar.

Also: Beide Interpretationen der Aufgabe machen einen kleinen Sinn (ich will ja nicht sagen, dass diese Vergleiche total unsinnig sind): Aber als wirklich extrem wichtig (im Sinne von: "Wenn man das nicht mal gemacht hat, ist einem etwas entgangen!") empfinde ich diese Vergleiche eh nicht. Sie können vielleicht ein wenig helfen, das errechnete nochmal ein wenig anders zu interpretieren. Und vielleicht sieht man nochmal was, was man bei der Interpretation der Ableitung gelernt hat... was vielleicht irgendwie nochmal hilfreich sein könnte. Aber naja: vielleicht!

P.S.
Sollte jemand anderer Meinung sein und doch begründen können, warum die Aufgabenstellung nicht schlecht ist - zu meiner Verteidigung: Zu so später Stunde arbeitet mein Gehirn nicht mehr so ganz gut :P

Gruß,
Marcel

Bezug
        
Bezug
Aufg. verstehen Gym10 S189, 3: Antwort
Status: (Antwort) fertig Status 
Datum: 03:22 Mo 09.04.2012
Autor: Fulla

Hallo Sabine,

so wie ich die Aufgabe verstehe, sollt du zunächst die Ableitungen berechnen - das hast du ja schon (richtig) gemacht.

Als nächstes sollst du die Steigungen der Funktionen [mm]f_n[/mm] vergleichen. Du nimmst also z.B. [mm]x=0.5[/mm] und vergleichst die Steigungen (also die Ableitungen, die du schon berechnet hast) von [mm]x^2[/mm], [mm]x^3[/mm], [mm]x^4[/mm], [mm]x^5[/mm] und [mm]x^6[/mm]. Danach machst du dasselbe an der Stelle $x=1$ und schließlich bei $x=2$.

Der tiefere Sinn dieser Aufgabe erschließt sich mir auch nicht... Das ist verhältnismäßig viel Schreibarbeit bei relativ wenig Erkenntnis. Kommt sie aus deinem Buch oder ist das eine von deinem Lehrer erdachte Aufgabe?

Lieben Gruß,
Fulla


Bezug
                
Bezug
Aufg. verstehen Gym10 S189, 3: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:49 Mo 09.04.2012
Autor: Giraffe

Moin Jungs,
ich bin genervt. Einerseits natürlich erleichtert, dass ich hier nicht einen "Anranzer" kriege: "Überlege doch mal selbst, die Aufg.stellg. sagt doch genau das, was sie verlangt"
Wieder bin nicht ich die doofe, sondern das Buch; (um bei der Wahrheit zu bleiben - das ist ja auch oft genug andersrum!)
Ich schreibe nun bald monatl. an den Verlag. Bisher sind sie für solche Hinweise dankbar u. ich kann mich sicher auch drauf verlassen, dass sie es an die Autoren weiterleiten. Eine Antw. war sogar dabei (aus dem Verlag, nicht vom Autor!), der sagte: "Stimmt, die Aufg. ist mit den Größenangaben nicht lösbar" u. dass es gewiss in der nächsten Auflage berücksichtigt würde u. wenn es soweit ist ich auch so ein neues Exemplar bekäme" Hoffentl. haben sie es bis dahin nicht vergessen, hihi, denn ich arbeitete fast tägl. mit diesem Schulbuch. Es ist zwar richtig nach alter Schule eingeschlagen, aber abnutzen tut es sich ja doch u. teuer waren die Dinger obendrein auch noch.
Ich hoffe nur, dass die da im Verlag meine eingehenden e-mails nicht verwechseln, bei der menge. Oder irgndwann denken: Ach, die Querulantin schon wieder, jetzt will sie noch n Buch :-)

Wie dem auch sei, liebster Fulla, ich werde nix mehr mit dieser Aufg. machen. Ich habe keine Zeit Erkenntnisgewinn zu suchen; mache mich lieber an die vielen anderen Aufg., die da brennend noch auf mich warten.

Die einzige Interpretation, die mich reizt u. die ich spannend finde, ist,
das die Richtgs.-Pfleile (ein pink, 2 grüne), die ich oben in der Tab. gemacht habe, die wechseln ja. Und die spiegeln sich im Bild unten wieder.
Unspektakulär, weil das so sein muss, wenn sie doch die Wertetab. zu den Graphen sind. Aber nein, was ich meine: Die Pfleile mit einem Richtungswechsel - es gibt einen sehr großen Schnittpunktbereich. Von 0/0 bis zu diesem Bereich konvergieren die Grahpen. Grob gesprochen ab ca. x=1 (ab irgendwo aus diesem Bereich) divergieren sie wieder.
Hat nun nix mit Steig. zu tun, aber das fand ich interessant.

Okey, ihr lieben Nachtarbeiter,
(ich habe gestern glaube ich bis 23 h hier gesessen (matheraum), geschlafen u. jetzt bin ich grad aufgestanden u. es ist schon wieder Antw. da- ich danke euch!)
ich versuche mich an der nächsten Aufg.
LG
Sabine

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]