matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathematik-WettbewerbeAufgabe #18
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Mathematik-Wettbewerbe" - Aufgabe #18
Aufgabe #18 < Wettbewerbe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathematik-Wettbewerbe"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufgabe #18: Übungsaufgabe
Status: (Übungsaufgabe) Übungsaufgabe Status 
Datum: 10:57 So 20.02.2005
Autor: Hanno

Hallo an alle!

Quelle: Bundesrunde Mathe-Olympiade Klasse 12-13

Es seien [mm] $f(x)=x^5+5x^4+5x^3+5x^2+1$ [/mm] und [mm] $g(x)=x^5+5x^4+3x^3-5x^2-1$. [/mm] Man ermittle alle diejenigen Primzahlen $p$, für die es ein natürliches $x$ mit [mm] $0\leq [/mm] x<p$ so gibt, dass $p$ sowohl $f(x)$ als auch $g(x)$ teilt. Für solche Primzahlen ermittle man alle $x$, für die dies zutrifft.

Liebe Grüße,
Hanno

        
Bezug
Aufgabe #18: Antwort
Status: (Frage) beantwortet Status 
Datum: 18:12 So 20.02.2005
Autor: moudi

Hallo zusammen

Wenn p die Polynome f(x) und g(x) teilt, dann auch die Summe f(x)+p(x) und die Differenz f(x)-g(x).

Man berechnet
[mm] $f(x)+g(x)=2x^5+10x^4+8x^3=2x^3(x+4)(x+1)$ [/mm] und
[mm] $f(x)-g(x)=2x^3+10x^2+2=2(x^3+5x^2+1)$ [/mm]

Aus p teilt f+g entnimmt man, dass p teilt 2 oder p teilt x+1 oder p teilt x+4.

P teilt 2 geht nicht, denn dann müsste x=1 sein (x=0 geht sowieso nicht)  aber f(1)=17.

a) p teilt x+1, dann berechnet man [mm] $\frac12(f(x)-g(x))=(x+1)(x^2+4x-4)+5$ [/mm]
     also teilt p die Zahl 5 und somit ist p=5 (und x=4).

b) p teilt x+4, dann berechnet man [mm] $f\frac12((x)-g(x))=(x+4)(x^2+x-4)+17$ [/mm]
     also teilt p die Zahl 17 und somit ist p=17 (und x=13).

A propos: Teilt p die Polynome f(x)+g(x) und f(x)-g(x), dann teilt p auch die Polynome f(x) und g(x), wenn p die Zahl 2 nicht teilt (denn 2f(x)=(f(x)+g(x))+(f(x)-g(x)) und 2g(x)=(f(x)+g(x))-(f(x)-g(x))), dies ist für die Fälle a) und b) erfüllt.

mfG Moudi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathematik-Wettbewerbe"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]