matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe-Olympiaden anderer LänderAufgabe #66 (IrMO),(ZT)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Mathe-Olympiaden anderer Länder" - Aufgabe #66 (IrMO),(ZT)
Aufgabe #66 (IrMO),(ZT) < MO andere Länder < Wettbewerbe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe-Olympiaden anderer Länder"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufgabe #66 (IrMO),(ZT): Übungsaufgabe
Status: (Übungsaufgabe) Übungsaufgabe Status 
Datum: 13:12 Mo 18.07.2005
Autor: Hanno

Hallo an alle!

Man finde alle ganzzahligen Lösungspaare $(m,n)$ von

[mm] $(m^2+n)(n^2+m)=(m+n)^3$. [/mm]



Liebe Grüße,
Hanno

        
Bezug
Aufgabe #66 (IrMO),(ZT): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:40 Mo 18.07.2005
Autor: Teletubyyy

Hallo Hanno;

[mm] $(m^2+n)(m+n^2)=(n+m)^3$ [/mm]

Für m = 0 erhällt man die trivialen Lösungen [mm]\{(m,n)|m=0 , n\in\IZ\}[/mm] bzw. analoges für n = 0.

Es sei also im weiteren $n,m [mm] \not= [/mm] 0$

Vereinfacht man nun den obigen Ausdruck:

[mm] $(m^2+n)(m+n^2)=(n+m)^3$ [/mm]
[mm] $\gdw m^2n^2+m^3+n^3+nm=n^3+3n^2m+3nm^2+m^3$ [/mm]
[mm] $\gdw [/mm] (m-3)n^2m+(1-3m)nm=0$

[mm] $\gdw n=\frac{3m-1}{m-3}$ [/mm]

Im weiteren betrachte ich nun n als [mm] $f(m)\in\IR$ [/mm]

f ist nun eine ganzrationale Funktion mit einer Pol bei m = 3. sowohl in dem Intervall [mm] $(-\infty;3)$, [/mm] als auch in [mm] $(3;\infty)$ [/mm] ist f jeweils monoton fallend. ferner erhällt man y=3 als waagerechte Asymtote.

Zunächst betrachte ich den Bereich links der Pol (m<3):
Wegen der Monotonie und dem asymtotischen Verhalten, ist nun aber auch n<3.

Da [mm] $(n,m,)\in\IZ^2$ [/mm] überprüfe ich zunächst für $f(m)=2,1,-1,..$ das zugehorige m auf ganzzahligkeit:

f(m)=2:     [mm] $2=\frac{3m-1}{m-3} \gdw [/mm] m=-5$

f(m)=1:     [mm] $1=\frac{3m-1}{m-3} \gdw [/mm] m=-1$

Für weitere ganzzahlige Lösungen in [mm] $(-\infty;3)$ [/mm] verbleiben nun nur noch (n,m)=(f(1),1),(f(2),2).
f(1)=-1; f(2)=-5

Jetzt muss ich noch f in [mm] (3;\infty) [/mm] untersuchen:

f(4)=11; f(5)=7; f(6)=17/3<6

Wegen der Monotonie, und Beschränktheit kann es nur noch Lösungen mit f(m)=5,4 geben

f(m)=5:     [mm] $5=\frac{3m-1}{m-3} \gdw [/mm] m= 7$

f(m)=4:     [mm] $4=\frac{3m-1}{m-3} \gdw [/mm] m=11$


[mm] L=\{(n,m)|n=0 ,m\in\IZ \, \, ; n\in\IZ , m=0 \,\, ; (n,m)=(2;-5),(1;-1),(-1;1),(-5;2),(11;4),(7;5),(5;7),(7;11)\} [/mm]

Ich hoffe ich hab das jetzt nicht zu umständlich gemacht.

Gruß Samuel

Bezug
                
Bezug
Aufgabe #66 (IrMO),(ZT): Richtig! Alternativlösung
Status: (Antwort) fertig Status 
Datum: 08:45 Di 19.07.2005
Autor: Hanno

Hallo Samuel!

Juhu, diesmal habe ich alles nachvollziehen können!

> $ [mm] (m^2+n)(m+n^2)=(n+m)^3 [/mm] $
> Für m = 0 erhällt man die trivialen Lösungen $ [mm] \{(m,n)|m=0 , n\in\IZ\} [/mm] $ bzw. analoges für n = 0.
> Es sei also im weiteren $ n,m [mm] \not= [/mm] 0 $
> Vereinfacht man nun den obigen Ausdruck:
> $ [mm] (m^2+n)(m+n^2)=(n+m)^3 [/mm] $

>$ [mm] \gdw m^2n^2+m^3+n^3+nm=n^3+3n^2m+3nm^2+m^3 [/mm] $

> $ [mm] \gdw [/mm] (m-3)n^2m+(1-3m)nm=0 $
> $ [mm] \gdw n=\frac{3m-1}{m-3} [/mm] $

[ok].

> Zunächst betrachte ich den Bereich links der Pol (m<3):
> Wegen der Monotonie und dem asymtotischen Verhalten, ist nun aber auch n<3.

> Da $ [mm] (n,m,)\in\IZ^2 [/mm] $ überprüfe ich zunächst für $ f(m)=2,1,-1,.. $ das zugehorige m auf ganzzahligkeit:

> f(m)=2:     $ [mm] 2=\frac{3m-1}{m-3} \gdw [/mm] m=-5 $

> f(m)=1:     $ [mm] 1=\frac{3m-1}{m-3} \gdw [/mm] m=-1 $

[ok]

> Für weitere ganzzahlige Lösungen in $ [mm] (-\infty;3) [/mm] $ verbleiben nun nur noch (n,m)=(f(1),1),(f(2),2).
> f(1)=-1; f(2)=-5

> Eine schöne Idee! Klasse!

> Jetzt muss ich noch f in $ [mm] (3;\infty) [/mm] $ untersuchen:

> f(4)=11; f(5)=7; f(6)=17/3<6

> Wegen der Monotonie, und Beschränktheit kann es nur noch Lösungen mit f(m)=5,4 geben

> f(m)=5:     $ [mm] 5=\frac{3m-1}{m-3} \gdw [/mm] m= 7 $

> f(m)=4:     $ [mm] 4=\frac{3m-1}{m-3} \gdw [/mm] m=11 $

[ok] Schön gemacht, Samuel!

> Ich hoffe ich hab das jetzt nicht zu umständlich gemacht

Als ich die Aufgabe löste, habe ich folgendes getan: wie du habe ich bis zu $ [mm] n=\frac{3m-1}{m-3} [/mm] $ umgeformt. Betrachten wir nun den Bruch rechts. Sei $p$ ein Primeiler von $m-3$ und von $3m-1$, so ist er auch Teiler von $3m-1-3(m-3)=8$, d.h. $p=2$; $m-3$ ist also Zweierpotenz, d.h. es gibt ein $x$ mit [mm] $m=2^x+3$. [/mm] Ebenso erhalten wir [mm] $n=2^y+3$. [/mm] Setzen wir dies in obige Gleichung ein, erhalten wir nach kurzen Umformungen [mm] $2^{x+y}=8$. [/mm] Durchtesten der daraus resultierenden Fälle liefert das gewünschte Ergebnis.
Man hätte sich die Sache mit der Zweierpotenz auch noch ein wenig erleichtern können, denn die Argumentation bezüglich der Primteiler von Zähler und Nenner kann natürlich auch auf beliebige Teiler, und, da der Bruch ganzzahlig ist, somit auch auf $m-3$ selbst angewandt werden. Somit muss $m-3=1,2,4,8$ gelten, womit man direkt bei den zu untersuchenden Fälle wäre.
Noch schöner geht es allerdings so: wie man leicht nachrechnet, ist die Anfangsbedingung für [mm] $mn\not= [/mm] 0$ zu $(m-3)(n-3)=8$ äquivalent; der Rest ist nun einfach.


Damit wäre diese Aufgabe zu Genüge diskutiert :)

Liebe Grüße,
Hanno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe-Olympiaden anderer Länder"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]