matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraAufgabe zu Dreiecksmatrizen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Aufgabe zu Dreiecksmatrizen
Aufgabe zu Dreiecksmatrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufgabe zu Dreiecksmatrizen: Aufgabe 4
Status: (Frage) beantwortet Status 
Datum: 19:53 Do 10.02.2005
Autor: DerMathematiker

Hallo Ihr,

mein Aufgabenblatt gibts  []HIER.

Ich bin gerade an der Aufgabe 4.

von a) habe ich die Implikation von i)->ii) bewiesen...wie könnte man ii)->i) beweisen? Und Teil b) soll man mit Hilfe von Teil a) lösen.

Habt ihr eine Idee? Könnt ihr mir Tipps geben?

MfG Andi

        
Bezug
Aufgabe zu Dreiecksmatrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:46 Fr 11.02.2005
Autor: DaMenge

Hi Andi,

die kleine Aufgabe hättest du ruhig hier schreiben können...

Naja, ein paar Tipps sind schwierig zu geben, weil die Lösung ja offensichtlich ist...

Also: zur a) ii->i : die [mm] e_j [/mm] sollen die (Standard)Basisvektoren sein, in der T dargestellt ist, dann ist $ [mm] L(e_j) [/mm] $ das Bild von [mm] e_j [/mm] unter L , also gerade die j-te Spalte.
ii) besagt nun, dass die $ [mm] L(e_j) [/mm] $ als LinKombi von [mm] e_j [/mm] bis [mm] e_p [/mm] dargestellt werden kann - was sagt das also für die Koeffizienten der [mm] e_i [/mm] mit i<j in der j-ten Spalte der Darstellungsmatrix ?

zur b) Naja, erstmal steht nicht da, dass man es mit der a) machen muss, aber wenn es denn sein muss, fällt mir jetzt erstmal nur induktive Schlussweise ein:
für $ [mm] L(e_n)$ [/mm] darf das Diagonalelement nicht 0 sein, denn sonst ist der Kern nicht trivial
für $ [mm] L(e_{n-1}) [/mm] $ auch nicht, sonst ist es (nach b) ) eine LinKombi von $ [mm] L(e_n) [/mm] $ also nicht injektiv. [Bzw: argumentiere, dass man dann eine Nullzeile erzeugen kann -> Rang kleiner n -> nicht surjektiv -> nicht invertierbar]
dies mache noch für den allgemeinen i-ten Schritt, dann bist du fertig.
[man kann dies bestimmt schöner machen...]

Viele Grüße
DaMenge

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]