matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationAufleitung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integration" - Aufleitung
Aufleitung < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufleitung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:40 Di 01.08.2006
Autor: Trapt_ka

Aufgabe
[mm] x/(1-x^2)^2 [/mm]

DIes ist teil (u') einer partiellen integration und soll nun zu u aufgeleitet werden.
kann mir einer erklären wei das funktionieren soll bzw wie dies gernerell geht
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Aufleitung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:32 Di 01.08.2006
Autor: Event_Horizon

Dies ist ein Integral, das du recht einfach lösen kannst. Es ist die Umkehrung der Kettenregel.

Wenn du eine Stammfunktion ableitest, gilt "innere Ableitung mal äußere Ableitung". Die innere Ableitung ist x, die äußere ist 1/z². Das Argument der äußeren Funktion ist 1-x².


Also: Leite einfach 1/z² auf, und setze anschließend (1-x²) ein. Wenn du das ableitest, wirst du sehen, daß das gleiche raus kommt.

Vermutlich wirst du beim Ableiten einen Faktor erhalten, der bei deinem term da nicht steht. Du mußt dann deine Stammfkt. mit dem Kehrwert des Faktors multiplizierten, damit der Faktor beim Ableiten verschwindet.


Nochmal: Die gesuchte Stammfunktion ist sowas wie f(g). Abgeleitet ist das g' f'(g), und genau sowas hast du da stehen.



Bezug
                
Bezug
Aufleitung: stammfunktion
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:01 Di 01.08.2006
Autor: Trapt_ka

es geht hier nicht um die stammfunktion sonder um die aprtielle integration. wie dies abläuft ist mir klar jedoch habe ich wie gesagt den obrigen term als u'
da die in der aufgabe angegebn wurde. nunn brauche ich für die partielle integration ja noch u
da ich ja u,u' und v brauche

Bezug
                        
Bezug
Aufleitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:43 Di 01.08.2006
Autor: Event_Horizon

Ja, abedr genau darumgeht es doch: u ist eine Stammfunktion von u'. Wenn du u' aufleitest, also integrierst, bekommst du u, genau, wie du willst!

Bezug
        
Bezug
Aufleitung: u = Stammfunktion zu u'
Status: (Antwort) fertig Status 
Datum: 07:33 Mi 02.08.2006
Autor: Loddar

Hallo Trapt_ka!


Nochmals in Ergänzung zu Event_Horizon's Antwort ...

Um von $u'_$ auf $u_$ zu kommen, musst Du hier eine Stammfunktion zu $u'_$ bestimmen; sprich: $u'_$ integrieren:

$u \ = \ [mm] \integral{u' \ dx} [/mm] \ = \ [mm] \integral{\bruch{x}{\left(1-x^2\right)^2} \ dx}$ [/mm]

Wie bereits angedeutet, kannst Du dieses Integral durch die Substitution $z \ := \ [mm] 1-x^2$ $\Rightarrow$ [/mm]   $z' \ = \ [mm] \bruch{dz}{dx} [/mm] \ = \ -2x$ lösen.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]