matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungAufleitung von Funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integralrechnung" - Aufleitung von Funktionen
Aufleitung von Funktionen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufleitung von Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:53 Di 19.03.2013
Autor: buyall4ever

Aufgabe
[mm] f(x)=0,1x^2-(2/x^2) [/mm]
f(x)=(1/x-2)
f(x)=4cos(((1/2)x)-1)


Hallo, mich würde mal interessieren wie man diese Funktionen aufleitet, die Lösungen habe ich selbst, bräuchte aber einen destailierten Lösungsweg, sitz hier gerade bei der Vorbereitung zu einer Prüfung.

        
Bezug
Aufleitung von Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:57 Di 19.03.2013
Autor: fred97


> [mm]f(x)=0,1x^2-(2/x^2)[/mm]
>  f(x)=(1/x-2)
>  f(x)=4cos(((1/2)x)-1)
>  
> Hallo, mich würde mal interessieren wie man diese
> Funktionen aufleitet,


Das gibt es nicht !!!!



>  die Lösungen habe ich selbst,
> bräuchte aber einen destailierten Lösungsweg, sitz hier
> gerade bei der Vorbereitung zu einer Prüfung.

http://de.wikipedia.org/wiki/Tabelle_von_Ableitungs-_und_Stammfunktionen


FRED


Bezug
                
Bezug
Aufleitung von Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:07 Di 19.03.2013
Autor: buyall4ever


Bezug
                        
Bezug
Aufleitung von Funktionen: Begrifflichkeit
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:08 Di 19.03.2013
Autor: Loddar

Hallo buyall4ever!


Fred's Anmerkung bezieht sich auf das Wort "aufl...", welches es nicht gibt.
Das heißt entweder "integrieren" oder "Stammfunktion bilden".


Gruß
Loddar


Bezug
                                
Bezug
Aufleitung von Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:10 Di 19.03.2013
Autor: buyall4ever

Ok, dankeschön :)

Bezug
        
Bezug
Aufleitung von Funktionen: Begrifflichkeiten
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:11 Di 19.03.2013
Autor: Diophant

Hallo,

was in der Antwort von FRED die Kernbotschaft ist, will ich dir nochmal verdeutlichen.

Das Unwort Aufleiten lernt man leider immer häufiger in der Schule. Es ist sprachlicher Unsinn der schlimmsten Sorte, denn Ableiten im logischen Sinne (und so ist das in der Differenzialrechnung gemeint), hat den Charakter, dass man aus einer Tatsache eine andere ableitet (bzw. hier sind es mathematische Größen). Ableiten also im Sinne von Wegleiten. Das Gegenteil wäre Zuleiten und damit Zuleitung für das Integral. Das ist Quark, und wenn man sich einer einigermaßen professionellen Sprechweise befleißigen möchte, akzeptiert man, dass es für Differenzieren mit Ableiten ein deutsches Wort gibt, für das Integral jedoch nicht. Man sagt dann je nach dem, worauf der Schwerpunkt liegt: man integriert oder man bildet die Stammfunktion.


Gruß, Diophant

Bezug
        
Bezug
Aufleitung von Funktionen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 19:13 Di 19.03.2013
Autor: buyall4ever

Aufgabe
[mm] f(x)=0,1x^2-(2/x^2) [/mm]
f(x)=(1/x-2)
f(x)=4cos(((1/2)x)-1)

Hallo, mich würde mal interessieren wie man diese Funktionen integriert, die Lösungen habe ich selbst, bräuchte aber einen destailierten Lösungsweg, sitz hier gerade bei der Vorbereitung zu einer Prüfung. Dankeschön schon mal :)

Bezug
                
Bezug
Aufleitung von Funktionen: was ist unklar?
Status: (Antwort) fertig Status 
Datum: 19:18 Di 19.03.2013
Autor: Loddar

Hallo buyall4ever!


Was genau ist denn unklar? Wo genau kommst Du nicht weiter? Was hast Du Dir bislang dazu überlegt?
Das gehört hier im Forum mit dazu.


> [mm]f(x)=0,1x^2-(2/x^2)[/mm]

Schreibe um zu:

$f(x) \ = \ [mm] 0{,}1*x^2-2*x^{-2}$ [/mm]

Nun weiter mit der MBPotenzregel.


> f(x)=(1/x-2)

Auch hier umschreiben:

$f(x) \ = \ [mm] x^{-1}-2$ [/mm] (oder meintest Du eine andere Funktion?)

Auch hier weiter mit MBPotenzregel


>  f(x)=4cos(((1/2)x)-1)

Hier kann man z.B. $z \ := \ [mm] \bruch{1}{2}*x-1$ [/mm] substituieren.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]