matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisAufstellen einer Parabelgleich
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Schul-Analysis" - Aufstellen einer Parabelgleich
Aufstellen einer Parabelgleich < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufstellen einer Parabelgleich: Frage zu einer Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:46 Mi 08.12.2004
Autor: nibrir

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich habe folgende Aufgabe erhalten und soll damit die Gleichung einer Parabel dritter Ordnung aufstellen:

Eine Parabel dritter Ordnung geht durch den Ursprung und hat in P(-2/4) einen Wendepunkt. Die Wendetangente schneidet die x-Achse in Q(4/0).

Ich brauche für die Gleichung (ax³+bx²+cx+d=0) ja nun vier Bedingungen, wenn ich das richtig sehe. Leider weiß ich nicht, wie ich die Daten aus der Aufgabe umformen soll; wäre eine Bedingung f(0)=0 und demnach d=0, weil der Graph ja durch den Urpsrung geht?

Vielleicht kann mir jemand hier auf die Sprünge helfen, ich bräuchte lediglich den Ansatz. Berechnen kann ich die Gleichung, das ging bei anderen Aufgaben auch; ich kann nur die Daten nicht in Bedingungen umformen.

        
Bezug
Aufstellen einer Parabelgleich: Antwort
Status: (Antwort) fertig Status 
Datum: 17:27 Mi 08.12.2004
Autor: Paulus

Hallo nibrir

[willkommenmr]

>  
> Ich habe folgende Aufgabe erhalten und soll damit die
> Gleichung einer Parabel dritter Ordnung aufstellen:
>  
> Eine Parabel dritter Ordnung geht durch den Ursprung und
> hat in P(-2/4) einen Wendepunkt. Die Wendetangente
> schneidet die x-Achse in Q(4/0).
>  
> Ich brauche für die Gleichung (ax³+bx²+cx+d=0) ja nun vier
> Bedingungen, wenn ich das richtig sehe. Leider weiß ich

Ja, das ist korrekt [ok]

> nicht, wie ich die Daten aus der Aufgabe umformen soll;
> wäre eine Bedingung f(0)=0 und demnach d=0, weil der Graph
> ja durch den Urpsrung geht?
>

[ok] Sehr gut!

Formal sähe das ja etwa so aus:

Wenn man für x den Wert 0 einsetzt, dann kommt für y auch 0 heraus. Also so:

[mm] $x*0^3+b*0^2+c*0+d=0$ [/mm]

Womit sofort folgt: $d=0_$

Ja, was steht denn noch in der Beschreibung?

Einfach mal alles analysieren.

Eine Parabel dritter Ordnung geht durch den Ursprung und
hat in P(-2/4) einen Wendepunkt. Die Wendetangente
schneidet die x-Achse in Q(4/0).

Daraus lässt sich schliessen, dass die Parabel durch den Punkt P gehen muss, dass also, wenn man für x den Wert -2 einsetzt, dann der Funktionswert y den Wert 4 haben muss. Das gibt die 2. Bedingung

$f(-2)=4_$


Dann steht da noch:
Eine Parabel dritter Ordnung geht durch den Ursprung und
hat in P(-2/4) einen Wendepunkt. Die Wendetangente
schneidet die x-Achse in Q(4/0).

Jupp! Die Bedingung für einen Wendepunkt ist ja: die 2. Ableitung ist = Null.

Berechne also die 2. Ableitung, setze x = 2 ein. Das gibt dann die 3. Bedingung:

$f''(-2)=0_$


Die 4. Bedingung ist etwas schwieriger zu berechnen: Die Wendetangente soll die x-Achse in Q(4,0) schneiden.

Dazu musst du einfach formal die Gleichung der Wendetangente aufstellen. Die muss ja durch die Punkte P und Q gehen. Von dieser Geraden weiss man noch, dass sie die gleiche Steigung haben muss wie die Funktion bei x=-2.

Das sind also 2 Schritte:

1) Berechnen der Wendetangente (Gerade durch P und Q)

2) Die Wendtangente hat ja die Form y=mx+e

Das m ist die Steigung der Geraden, führt also auf die Gleichung:

$m=f'(-2)$

Das wäre dann also die 4. Bedingung.

So, ich hoffe, mit diesen Paar Tipps lässt sich die Aufgabe lösen! :-)

Mit lieben Grüssen

Paul

Bezug
        
Bezug
Aufstellen einer Parabelgleich: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:37 Mi 08.12.2004
Autor: Daox

hab ausversehen eine (mitteilung) geschrieben, und kann sie nicht löschen, sorry
Bezug
        
Bezug
Aufstellen einer Parabelgleich: Antwort
Status: (Antwort) fertig Status 
Datum: 17:42 Mi 08.12.2004
Autor: Daox

und falls es dir hilft,die Fornel, für die Wendetangente ist
t(x) = f'(xw)*((x-xw)+f(xw) während xw die Wendestelle ist.
Du weißt ja, dass der Wendepunkt bei (-2:4) liegt, also kann man es entsprechend einsätzen

4=(f'(-2))*(4-(-2))+4

Viel Spaß beim Lösen

Bezug
                
Bezug
Aufstellen einer Parabelgleich: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:28 Mi 08.12.2004
Autor: nibrir

Ich danke euch beiden, die ersten drei bedingungen sind mir nun klar und ich kann sie auch nachvollziehen. Mit der vierten hab' ich jedoch immer noch so meine Schwierigkeiten.

Ich weiß beispielsweise nicht, was mir die Bedingung f(-2)=m nun konkret bringen soll, alle anderen Bedingungen sind mir beim Aufstellen der Gleichung ja sehr nützlich. Ich denke, ich muss da morgen einfach einmal meinen Lehrer fragen, vielleicht kann der mir das mit der Wendetangenten ja erklären.

Danke :)

Bezug
                        
Bezug
Aufstellen einer Parabelgleich: Antwort
Status: (Antwort) fertig Status 
Datum: 18:52 Mi 08.12.2004
Autor: Daox

sorry, wegen einem verbindungsfehler, der anscheinend keiner war, aber trotzdem beim meinem *** rechner angezeigt wurde, habe ich leider doppelt gepostet...
Bezug
                        
Bezug
Aufstellen einer Parabelgleich: Antwort
Status: (Antwort) fertig Status 
Datum: 18:52 Mi 08.12.2004
Autor: Daox

Dir fehlt ja ohne f'(-2) =12a-4b+c= -(2/3) eine Bedingung zur Lösung

Du weißt also, die Wendetangente geht durch den Wendepunkt, schneidet der gesuchten Graphen also
am Punkt (-2/4) und hat die gleiche Steigung, wie die Ableitung an dieser Stelle => f'(-2)=m
und da m die einzige Unbekannte der Tangentengleichung t(x) = mx+b ist, kann man durch das Ermitteln
von m den Funktionswert für die erste Ableitung an der Stelle -2 erhalten, und hätte die Bedingung:
f'(-2)=3a*(-2)²+2b*(-2)+c=m
dann hatt man die Formel zur Ermittlung der Wendetangente: t(x)= f'(xw)*(x-xw)+f(xw) während xw die wendestelle,
also xw=-2 und f'(xw) die Steigung, also m ist. nun weiß man, dass f(xw), also f(-2)=4
Dann hat man die Bedingung, dass die Tangente eine Nullstelle bei (4;0) hat, also

0= m*(4-xw)+f(xw), nun kann man die anderen werte einsetzen:
0= m*(4-(-2))+4
0 = m * 6 + 4 |-4
-4 = m * 6      | :6
-2/3 = m, und m ist ja f'(-2)
und somit hat man die Bedingung :
f'(-2)=3a*(-2)²+2b*(-2)+c=-2/3

Ich hoffe es ist einleuchtend geworden

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]