matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStatistik (Anwendungen)Aus Dichtefkt E(x) bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Statistik (Anwendungen)" - Aus Dichtefkt E(x) bestimmen
Aus Dichtefkt E(x) bestimmen < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aus Dichtefkt E(x) bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:54 Sa 05.07.2008
Autor: Druss

Aufgabe
EineZufallsvariable X besitzt die Dichtefunktion

[mm] f(x;\lambda)=\lambda*x^{\lambda-1} [/mm]   0 < x < 1 , [mm] \lambda [/mm] > 0

Bestimmen Sie E(X) und geben Sie einen Schätzer fuer [mm] \lambda [/mm] nach der Methode der Momente an.

Also dies is meine bisherige Lösung die meiner Meinung nach noch Fehlerhaft ist.

Der Erwartungswert E(X) einer stetigen ZV X mit der Dichte f(x) ist
[mm] E(X)=\integral_{-\infty}^{\infty}{x*f(x) dx} [/mm]

so folgendes

[mm] =x*\integral_{0}^{1}{f(x) dx} [/mm]

[mm] =x*\integral_{0}^{1}{\lambda*x^{\lambda-1} dx} [/mm]

[mm] =x*[x^{\lambda}] [/mm]  

[mm] =x*[1^{\lambda}-0^{\lambda}] [/mm] <- Die Grenzen eingesetzt

[mm] =x*[1^{\lambda}] [/mm]

[mm] =x^{\lambda} [/mm]

Nun habe ich ein Poblem, dass ich nicht weiß wie ich fuer [mm] \lambda [/mm] einen Schätzer bestimmen soll weil mein E(X) von x sowie von [mm] \lambda [/mm] abhängig ist.

Normalerweise würde ich ja wie bei einer Poisson-Verteilgung den [mm] E(X)=\overline{x}=\bruch{1}{\lambda} [/mm] nach [mm] \lambda [/mm] auflösen, sodass mein MM-Schäter [mm] \lambda=\bruch{1}{\overline{x}} [/mm] wäre.

Weiß aber hier nicht wie ich dies bestimmen koennt.

Vielen dank fuer Hilfe.

mfg Felix

        
Bezug
Aus Dichtefkt E(x) bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:37 Sa 05.07.2008
Autor: Druss

ich denke ich haben oben folgenden Fehler gemacht wobei ich mir immer noch bei ein paar dingen recht unsicher bin.

[mm] x*\lamba*x^{\lambda-1} [/mm] = [mm] \lambda*x^{\lambda} [/mm]

wobei ich jetzt nicht weiß wie ich auf eine entsprechende Stammfkt komme.

nochmals danke

mfg Felix

Bezug
                
Bezug
Aus Dichtefkt E(x) bestimmen: Umformung
Status: (Antwort) fertig Status 
Datum: 10:48 So 06.07.2008
Autor: Infinit

Hallo felix,
diese Umformung war wirklich verkehrt. Du erhöhst zwar die Potenz um 1, das Lambda hat da aber wirklich nichts zu suchen.
Gruß,
Infinit

Bezug
        
Bezug
Aus Dichtefkt E(x) bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:21 Sa 05.07.2008
Autor: vivo

Hallo,
  
[mm]\integral_{0}^{1}{x \lambda x^{\lambda -1} dx}[/mm] =
[mm]\integral_{0}^{1}{ \lambda x^{\lambda} dx}[/mm]     =
[mm] \lambda [\bruch{1}{\lambda +1}x^{\lambda +1} ]_0^1 [/mm]
[mm] \bruch{\lambda}{\lambda + 1} [/mm]

gruß

Bezug
                
Bezug
Aus Dichtefkt E(x) bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:32 So 06.07.2008
Autor: Druss

vielen dank hat mir sehr geholfen!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]