matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenInterpolation und ApproximationAusgleichspolynom, Problem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Interpolation und Approximation" - Ausgleichspolynom, Problem
Ausgleichspolynom, Problem < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ausgleichspolynom, Problem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:37 Mi 17.06.2009
Autor: Tobus

Aufgabe
Berechnen sie das Ausgleichspolynom für die Werte:
(2,4), (0,2), (-1,11), (3-7)

Hallo,
ich komm ab einer Stelle nicht mehr weiter.
Bisher hab ich das:

[mm] f(x)=a*x^{2}+b*x+c [/mm]
[mm] Fehler=\summe_{i=1}^{4}(y_{i}-f(x_{i}))^{2} [/mm]

[mm] F(x):=a_{1}*f_{1}+a_{2}*f_{2}+a_{3}*f_{3} [/mm]
[mm] f_1(x)=x^{2} [/mm]
[mm] f_2(x)=x [/mm]
[mm] f_3(x)=1 [/mm]

[mm] e(f)(a,b,c)=\summe_{i=1}^{4}(y_{i}-f(x_{i}))^{2}=\summe_{i=1}^{4}(y_{i}-a*x^{2}+b*x+c))^{2} [/mm]

Nun muss ich doch das partiell ableiten und 0 setzen. Leider weiß ich nicht wie ich mit der Summe umgehen soll.
Muss ich hier schon meine Werte einsetzen und dann ableiten oder wie mache ich das genau ?

DANKE

        
Bezug
Ausgleichspolynom, Problem: Antwort
Status: (Antwort) fertig Status 
Datum: 21:41 Mi 17.06.2009
Autor: MathePower

Hallo Tobus,


> Berechnen sie das Ausgleichspolynom für die Werte:
>  (2,4), (0,2), (-1,11), (3-7)
>  Hallo,
>  ich komm ab einer Stelle nicht mehr weiter.
>  Bisher hab ich das:
>  
> [mm]f(x)=a*x^{2}+b*x+c[/mm]
>  [mm]Fehler=\summe_{i=1}^{4}(y_{i}-f(x_{i}))^{2}[/mm]
>  
> [mm]F(x):=a_{1}*f_{1}+a_{2}*f_{2}+a_{3}*f_{3}[/mm]
>  [mm]f_1(x)=x^{2}[/mm]
>  [mm]f_2(x)=x[/mm]
>  [mm]f_3(x)=1[/mm]
>  
> [mm]e(f)(a,b,c)=\summe_{i=1}^{4}(y_{i}-f(x_{i}))^{2}=\summe_{i=1}^{4}(y_{i}-a*x^{2}+b*x+c))^{2}[/mm]


Das muss doch so lauten:

[mm]\summe_{i=1}^{4}(y_{i}-\left\red{(} \ a*x^{2}+b*x+c\right\red{)} \ ))^{2}[/mm]


>  
> Nun muss ich doch das partiell ableiten und 0 setzen.
> Leider weiß ich nicht wie ich mit der Summe umgehen soll.
>  Muss ich hier schon meine Werte einsetzen und dann
> ableiten oder wie mache ich das genau ?

Zuerst partiell ableiten.
Den Ausdruck in der Summe differenzierst Du partiell nach a,b,c.

Die partielle Ableitung dieses Ausdrucks summierst
Du dann über alle gegebenen Punktepaare.

Dann erhält Du ein Gleichungssystem.

>  
> DANKE


Gruß
MathePower

Bezug
                
Bezug
Ausgleichspolynom, Problem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:03 Mi 17.06.2009
Autor: Tobus


> Das muss doch so lauten:
> $ [mm] \summe_{i=1}^{4}(y_{i}-\left\red{(} \ a\cdot{}x^{2}+b\cdot{}x+c\right\red{)} [/mm] \ [mm] ))^{2} [/mm] $

Oh ja, da habe ich wohl eine Klammer vergessen

> Zuerst partiell ableiten.
> Den Ausdruck in der Summe differenzierst Du partiell nach a,b,c.

[mm] (y_{i}-a\cdot{}x^{2}+b\cdot{}x+c) [/mm]
abgeleitet nach a: [mm] 2*(a*x_{i}^{2}+b*x_{i}-y-c)*x_{i}^{2} [/mm]
abgeleitet nach b: [mm] 2*(b*x_{i}+a*x_{i}^{2}-y_{i}+c)*x_{i} [/mm]
abgeleitet nach c: [mm] 2*(c+a*x_{i}^{2}+b*x_{i}-y_{i}) [/mm]

> Die partielle Ableitung dieses Ausdrucks summierst
> Du dann über alle gegebenen Punktepaare.

dann bekomme ich:
196*a-40*b+28*c-180
68*a+28*b+8*c-36
28*a+8*b+8*c-48

und als lgs:

[mm] \pmat{ 196 & -40 & 28 \\ 68 & 28 & 8 \\ 28 & 8 & 8 } [/mm] * [mm] \vektor{a \\ b \\ c} [/mm] = [mm] \vektor{180 \\ 36 \\ 48} [/mm]

Jetzt nur noch nach a,b,c auflösen und fertig. Haben sie es so gemeint ?

Vielen Dank !!


Edit:
Ich hab es mal komplett berechnet, das kann so nicht stimmen, da die Funktion durch keinen der gegebenen Werte geht ;(

Bezug
                        
Bezug
Ausgleichspolynom, Problem: Antwort
Status: (Antwort) fertig Status 
Datum: 22:24 Mi 17.06.2009
Autor: MathePower

Hallo Tobus,

> > Das muss doch so lauten:
>  > [mm]\summe_{i=1}^{4}(y_{i}-\left\red{(} \ a\cdot{}x^{2}+b\cdot{}x+c\right\red{)} \ ))^{2}[/mm]

>  
> Oh ja, da habe ich wohl eine Klammer vergessen
>  
> > Zuerst partiell ableiten.
>  > Den Ausdruck in der Summe differenzierst Du partiell

> nach a,b,c.
>  
> [mm](y_{i}-a\cdot{}x^{2}+b\cdot{}x+c)[/mm]
>  abgeleitet nach a: [mm]2*(a*x_{i}^{2}+b*x_{i}-y-c)*x_{i}^{2}[/mm]
>  abgeleitet nach b: [mm]2*(b*x_{i}+a*x_{i}^{2}-y_{i}+c)*x_{i}[/mm]
>  abgeleitet nach c: [mm]2*(c+a*x_{i}^{2}+b*x_{i}-y_{i})[/mm]
>  
> > Die partielle Ableitung dieses Ausdrucks summierst
>  > Du dann über alle gegebenen Punktepaare.

>  
> dann bekomme ich:
>  196*a-40*b+28*c-180
>  68*a+28*b+8*c-36
>  28*a+8*b+8*c-48
>  
> und als lgs:
>  
> [mm]\pmat{ 196 & -40 & 28 \\ 68 & 28 & 8 \\ 28 & 8 & 8 }[/mm] *
> [mm]\vektor{a \\ b \\ c}[/mm] = [mm]\vektor{180 \\ 36 \\ 48}[/mm]


Die Koeffizientenmatrix

[mm]\pmat{ 196 & -40 & 28 \\ 68 & 28 & 8 \\ 28 & 8 & 8 }[/mm]

muß symmetrisch sein,

Daher stimmt einer der blau markierten Werte nicht:

[mm]\pmat{ 196 & \blue{-40} & 28 \\ \blue{68} & 28 & 8 \\ 28 & 8 & 8 }[/mm]

Die anderen Werte hab ich nicht nachgerechnet.


>  
> Jetzt nur noch nach a,b,c auflösen und fertig. Haben sie es
> so gemeint ?


Genau so hab ich das gemeint.


>  
> Vielen Dank !!
>  
> Edit:
>  Ich hab es mal komplett berechnet, das kann so nicht
> stimmen, da die Funktion durch keinen der gegebenen Werte
> geht ;(


Gruß
MathePower

Bezug
                                
Bezug
Ausgleichspolynom, Problem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:30 Mi 17.06.2009
Autor: Tobus

Vielen Dank, hab den Fehler ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]