matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenAusgleichspolynom zu Punkten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Ausgleichspolynom zu Punkten
Ausgleichspolynom zu Punkten < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ausgleichspolynom zu Punkten: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 23:07 Mo 07.05.2012
Autor: matheonline

Aufgabe
Bestimmen Sie ein Ausgleichspolynom 2. Grades zu den Punkten (2,4), (0,2), (-1,11) und (3,7).

Hallo,
ich sitze an dieser Aufgabe und komme nicht mehr weiter. Mit Newtonscher Interpolation kriege ich Polynom 3. Grades, man will aber 2. Grades:
P(x) = 2 - (13/3)*x + [mm] 4x^2 -(2/3)x^3 [/mm]
Hat jemand eine Idee, wie sowas mit Matrizen und Vektoren geht?
Grüße

        
Bezug
Ausgleichspolynom zu Punkten: Antwort
Status: (Antwort) fertig Status 
Datum: 23:20 Mo 07.05.2012
Autor: wieschoo


> Bestimmen Sie ein Ausgleichspolynom 2. Grades zu den
> Punkten (2,4), (0,2), (-1,11) und (3,7).
>  Hallo,
>  ich sitze an dieser Aufgabe und komme nicht mehr weiter.
> Mit Newtonscher Interpolation kriege ich Polynom 3. Grades,

muss es Newton sein?

> man will aber 2. Grades:
>  P(x) = 2 - (13/3)*x + [mm]4x^2 -(2/3)x^3[/mm]
>  Hat jemand eine
> Idee, wie sowas mit Matrizen und Vektoren geht?
>  Grüße

Ja kleinste Methode der Quadrate (ist ja nicht verboten)
Du suchst ein Polynom [mm]ax^2+bx+c[/mm], z.b. soll gelten [mm]a*\blue{2}^2+b*\green{2}+c=4[/mm]

Dann kannst du das lin. Ausgleichsproblem  [mm]\underbrace{\pmat{\blue{4}&\green{2}&1\\ 0&0&1\\ 1&-1&1\\ 9&3&1}}_{A}\pmat{a\\ b\\ c}+\Delta=\underbrace{\pmat{4\\ 2\\ 11\\ 7}}_{y}[/mm] betrachten.


mit Matlab
>> A=[4 2 1;0 0 1;1 -1 1;9 3 1];y=[4;2;11;7];inv(A'*A)*A'*y

  2.0000
-4.6000
  3.6000

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]