matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAussagenlogikAussagelogische Formel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Aussagenlogik" - Aussagelogische Formel
Aussagelogische Formel < Aussagenlogik < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Aussagenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aussagelogische Formel: Aufgabe
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 18:48 So 15.04.2007
Autor: RalU

Aufgabe
Gegeben sei eine aussagelogische Formel:

[mm] \psi= [/mm] a [mm] \wedge [/mm] b [mm] \vee \neg [/mm] c

a) Ist [mm] \psi [/mm] efüllbar bzw. allgemeingültig?

b) Stellen Sie [mm] \psi [/mm] ausschließlich mit der Sheffer-Funktion(NAND) dar.

c) Stellen Sie [mm] \psi [/mm] ausschließlich mit der Peirce-Funktion(NOR) dar.

d) Stellen Sie [mm] \psi [/mm] ausschließlich mit dem "if-then-else"-Operator (Konditional) dar.

Ich weiß, das eine aussagelogische Formel erfüllbar heißt, wenn es mindestens eine Interpretation der in ihr vorkommenden Atome (Satzbuchstaben) gibt, unter der die Formel wahr ist.

Allerdings weiß ich nicht, wie man sowas nachprüfen kann...
Wie geht man denn grundsätzlich an solch eine Aufgabe heran?
Kann mir jemand auch gute Literatur nennen?




        
Bezug
Aussagelogische Formel: Antwort
Status: (Antwort) fertig Status 
Datum: 15:28 Mo 16.04.2007
Autor: Bastiane

Hallo RalU!

> Gegeben sei eine aussagelogische Formel:
>  
> [mm]\psi=[/mm] a [mm]\wedge[/mm] b [mm]\vee \neg[/mm] c
>  
> a) Ist [mm]\psi[/mm] efüllbar bzw. allgemeingültig?
>  
> b) Stellen Sie [mm]\psi[/mm] ausschließlich mit der
> Sheffer-Funktion(NAND) dar.
>  
> c) Stellen Sie [mm]\psi[/mm] ausschließlich mit der
> Peirce-Funktion(NOR) dar.
>  
> d) Stellen Sie [mm]\psi[/mm] ausschließlich mit dem
> "if-then-else"-Operator (Konditional) dar.
>  Ich weiß, das eine aussagelogische Formel erfüllbar heißt,
> wenn es mindestens eine Interpretation der in ihr
> vorkommenden Atome (Satzbuchstaben) gibt, unter der die
> Formel wahr ist.

Naja, das ist die formale Definition. Intuitiv reicht es, wenn du einfach für a, b und c Nullen und Einsen so einsetzt, dass die Formel erfüllbar ist. das sollte hier nicht wirklich schwierig sein.
Um zu zeigen, dass eine Formel nicht erfüllbar ist, musst du sie zu einem Widerspruch führen, wenn du also z. B. durch Umformungen erhältst [mm] $a\wedge \neg [/mm] a$. Denn so etwas kann ja nie erfüllt sein - das ist ein Widerspruch.

Um die Teile b)-d) zu lösen, würde ich einfach die Verknüpfungen [mm] \wedge, \vee [/mm] und [mm] \neg [/mm] mit der angegebenen Verknüpfung darstellen. Also z. B. gilt ja:

$a NAND [mm] b=\neg(a\wedge [/mm] b)$

Dann ist [mm] $\neg a=\neg(a\wedge [/mm] a)=a NAND b$ und [mm] $a\wedge b=\neg[\neg(a\wedge b)]=\neg[\neg(a\wedge b)\wedge\neg(a\wedge b)]=\neg(a [/mm] NAND b [mm] \wedge [/mm] a NAND b)=(a NAND b) NAND (a NAND b)$ und zuletzt noch: [mm] $a\vee b=\neg(\neg a\wedge\neg b)=\neg [/mm] a NAND [mm] \neg [/mm] b$, und wenn du hier jedes [mm] \neg [/mm] noch durch die erste "Formel" ersetzt, hast du auch das Oder nur durch NAND dargestellt. Nicht erschrecken, das wird meistens recht unhandlich und länglich...

Naja, und wenn du diese drei hast, kannst du auch die obige Formel nur mit NANDs darstellen - einfach jedes einzelne Zeichen ersetzen. Auch das wird sehr unhandlich...

Probier's doch mal.

Viele Grüße
Bastiane
[cap]

Bezug
                
Bezug
Aussagelogische Formel: meine Lösung - bitte prüfen
Status: (Frage) überfällig Status 
Datum: 10:39 Di 17.04.2007
Autor: RalU

Aufgabe
  Gegeben sei eine aussagelogische Formel:

$ [mm] \psi= [/mm] $ a $ [mm] \wedge [/mm] $ b $ [mm] \vee \neg [/mm] $ c

a) Ist $ [mm] \psi [/mm] $ efüllbar bzw. allgemeingültig?

b) Stellen Sie $ [mm] \psi [/mm] $ ausschließlich mit der Sheffer-Funktion(NAND) dar.

c) Stellen Sie $ [mm] \psi [/mm] $ ausschließlich mit der Peirce-Funktion(NOR) dar.

d) Stellen Sie $ [mm] \psi [/mm] $ ausschließlich mit dem "if-then-else"-Operator (Konditional) dar.

Also hier mal meine Lösungen:

zu a) [mm] \psi [/mm] ist erfüllbar, aber nicht allgemein gültig, da nicht für alle möglichen Ausgaben erfüllbar. (Das ergab meine Wertetabelle).

zu b) [mm] \neg(a \wedge [/mm] b) - NAND

also folgt:  
a [mm] \wedge [/mm] b [mm] \vee \neg [/mm] c [mm] \equiv [/mm]
[mm] \neg \neg(a \wedge [/mm] b) [mm] \vee \neg [/mm] c [mm] \equiv [/mm] (de Morgan)
[mm] \equiv \neg [/mm] ( [mm] \neg(a \wedge [/mm] b) [mm] \wedge [/mm] c) (nochmal mit de Morgan)

c) [mm] \neg [/mm] (a [mm] \vee [/mm] b) - NOR

a [mm] \wedge [/mm] b [mm] \vee \neg [/mm] c [mm] \equiv [/mm]
[mm] \equiv [/mm] (a [mm] \wedge [/mm] b) [mm] \vee \neg [/mm] c [mm] \equiv [/mm]
[mm] \equiv \neg (\neg [/mm] (a [mm] \wedge [/mm] b)) [mm] \vee \neg [/mm] c [mm] \equiv [/mm]
[mm] \equiv \neg (\neg [/mm] a [mm] \vee \neg [/mm] b) [mm] \vee (\neg [/mm] c [mm] \wedge \neg [/mm] c) [mm] \equiv [/mm]
[mm] \equiv \neg (\neg [/mm] a [mm] \vee \neg [/mm] b) [mm] \vee (\neg [/mm] ( c [mm] \vee [/mm] c)

Allerdings komm ich jetzt nich weiter. Oder entspricht
[mm] \neg (\neg [/mm] a [mm] \vee \neg [/mm] b) auch einem NOR? Dann wär ich doch fertig...


zu d) "if - then - else": if a then b else c

[mm] \psi [/mm] = a [mm] \wedge [/mm] b [mm] \vee \neg [/mm] c

daraus zunächt mal (a [mm] \wedge [/mm] b):
if a then b else 0

und [mm] \neg [/mm] c:
if c then 0 else 1

zusammenführen:
if (a then b else 0) [mm] \vee [/mm] if (c then 0 else 1)

insgesamt also:
if(if(a then b else 0) then 1 else if(c then 0 else 1))

Ist das so alles korrekt?



Bezug
                        
Bezug
Aussagelogische Formel: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Do 19.04.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Aussagenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]