matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLogikAussagenlogik
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Logik" - Aussagenlogik
Aussagenlogik < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aussagenlogik: zwei Formeln äquivalent
Status: (Frage) beantwortet Status 
Datum: 12:05 Di 07.04.2015
Autor: AnnaK1990

Aufgabe
Folgende aussagenlogische Formeln sind äquivalent:
1) X [mm] \vee [/mm] Y [mm] \gdw [/mm] (Z [mm] \to [/mm] X [mm] \wedge [/mm] Y)
2) X [mm] \wedge [/mm] ( Z [mm] \to [/mm] Y)) [mm] \vee (\neg [/mm] X [mm] \wedge [/mm] ( Z [mm] \gdw \neg [/mm] Y))

Hi zusammen,

ich habe hier schnell die Wertetabelle aufgestellt, die Ergebnisse unterscheiden sich aber in einem Punkt... Dann wären die beiden Formeln somit nicht äquivalent?
Wundert mich aber, das ist eine Klausuraufgabe und die Frage ist ja explizit zeigen sie das die beiden Formeln äquivalent sind... Jemand eine Idee?

Grüße

        
Bezug
Aussagenlogik: Antwort
Status: (Antwort) fertig Status 
Datum: 13:09 Di 07.04.2015
Autor: Al-Chwarizmi


> Folgende aussagenlogische Formeln sind äquivalent:
>  1) X [mm]\vee[/mm] Y [mm]\gdw[/mm] (Z [mm]\to[/mm] X [mm]\wedge[/mm] Y)
>  2) X [mm]\wedge[/mm] ( Z [mm]\to[/mm] Y)) [mm]\vee (\neg[/mm] X [mm]\wedge[/mm] ( Z [mm]\gdw \neg[/mm] Y))

>  Hi zusammen,
>  
> ich habe hier schnell die Wertetabelle aufgestellt, die
> Ergebnisse unterscheiden sich aber in einem Punkt... Dann
> wären die beiden Formeln somit nicht äquivalent?
>  Wundert mich aber, das ist eine Klausuraufgabe und die
> Frage ist ja explizit zeigen sie das die beiden Formeln
> äquivalent sind... Jemand eine Idee?
>  
> Grüße


Hallo Anna

ich habe ebenfalls eine Wertetabelle berechnet. Bei mir
stimmt die Äquivalenz (vielleicht war ich beim Aufstellen
nicht ganz so schnell ...).
Um herauszufinden, wo genau etwas nicht passt, müsstest
du also z.B. die Wertetabelle zeigen, oder wenigstens
dasjenige Beispiel, wo du keine Übereinstimmung gefunden
hast. Für Letzteres würde es genügen, dass du die ent-
sprechenden Belegungen von X,Y und Z angibst.

LG ,   Al-Chwarizmi

Bezug
                
Bezug
Aussagenlogik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:35 Di 07.04.2015
Autor: AnnaK1990

Aufgabe
AALSO:
x  y  z    Formel1     Formel2
0  0 0        0              0
0  0 1        1              1
0  1 0        1              1
0  1 1        1              0
1  0 0        1              1
1  0 1        0              1
1  1 0        1              1
1  1 1        1              1

es ist also "verdeht" bei 011 und 101 :/ habe es zweimal gemacht und bin auf das selbe ergebniss gekommen...

Dankee

Bezug
                        
Bezug
Aussagenlogik: Antwort
Status: (Antwort) fertig Status 
Datum: 17:22 Di 07.04.2015
Autor: Ladon

Hallo Anna,

beachte:

[mm] \begin{tabular}{c|c|c|c|c|c|c|c|c|c|c|c|c|c} X & Y & Z & \ensuremath{\neg} X & \ensuremath{\neg} Y & X \ensuremath{\vee} Y & Z \ensuremath{\rightarrow} Y & X \ensuremath{\wedge} (Z \ensuremath{\rightarrow} Y) & X \ensuremath{\wedge} Y & Z \ensuremath{\rightarrow} (X \ensuremath{\wedge} Y) & Z \ensuremath{\leftrightarrow \neg} Y & \ensuremath{\neg} X \ensuremath{\wedge} (Z \ensuremath{\leftrightarrow \neg} Y) & Formel 1 & Formel 2 \\ 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ \end{tabular} [/mm]

MfG
Ladon

Bezug
                                
Bezug
Aussagenlogik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:55 Di 07.04.2015
Autor: AnnaK1990

Hi,
vielen Dank, habe ein paar mal gebraucht bis ich es gesehen habe... hatte beides mal ganz am ende einfach das Gegenteil geschrieben von dem was ich meinte :D...

Dankööö


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]