matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraAut(G) Untergruppe von S_{G}
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Algebra" - Aut(G) Untergruppe von S_{G}
Aut(G) Untergruppe von S_{G} < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aut(G) Untergruppe von S_{G}: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:12 Do 13.04.2006
Autor: madde_dong

Aufgabe
Sei G eine Gruppe. Die Automorphismengruppe Aut(G)  =  [mm] \{f: G \to G | f \ ist \ Isomorphismus \} [/mm] ist Untergruppe der symmetrischen Gruppe [mm] S_{G} [/mm] = [mm] \{f: G \to G | f \ ist\ bijektiv\}. [/mm]

Wir haben in der Vorlesung die Äquivalenz von Bijektivität uns Isomorphie gezeigt. Wieso ist Aut(G) also nur Untergruppe von [mm] S_{G}? [/mm] So wie ich das verstehe sind die beiden doch gleich, oder nicht?

        
Bezug
Aut(G) Untergruppe von S_{G}: Antwort
Status: (Antwort) fertig Status 
Datum: 22:20 Do 13.04.2006
Autor: felixf


> Sei G eine Gruppe. Die Automorphismengruppe Aut(G)  =  [mm]\{f: G \to G | f \ ist \ Isomorphismus \}[/mm]
> ist Untergruppe der symmetrischen Gruppe [mm]S_{G}[/mm] = [mm]\{f: G \to G | f \ ist\ bijektiv\}.[/mm]
>  
> Wir haben in der Vorlesung die Äquivalenz von Bijektivität
> uns Isomorphie gezeigt.

Vorsicht! Ihr habt die Aequivalenz fuer den Fall gezeigt, dass die Funktion bereits ein Homomorphismus ist! Wenn es einfach eine beliebige Funktion $f : G [mm] \to [/mm] G$ ist, dann impliziert $f$ Isomorphismus sicher, dass $f$ bijektiv ist, aber umgekehrt gilt das im Allgemeinen nicht! (Nimm z.B. eine bijektive Abbildung $f : G [mm] \to [/mm] G$, die das Neutralelement auf irgendein anderes Element abbildet. Falls $|G| > 1$ ist ist dies moeglich. Dann kann $f$ nicht in $Aut(G)$ liegen.)

> Wieso ist Aut(G) also nur
> Untergruppe von [mm]S_{G}?[/mm] So wie ich das verstehe sind die
> beiden doch gleich, oder nicht?

Die beiden sind genau dann gleich, wenn $|G| = 1$ ist.

LG Felix


Bezug
                
Bezug
Aut(G) Untergruppe von S_{G}: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:39 Do 13.04.2006
Autor: madde_dong

Ich Dummkopf, natürlich! Die Annahme, dass f Homomorphismus sein soll, habe ich in dem Beweis der Äquivalenz glatt überlesen. Ich danke dir!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]