matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperAut(G) für zyklische Gruppe
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gruppe, Ring, Körper" - Aut(G) für zyklische Gruppe
Aut(G) für zyklische Gruppe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aut(G) für zyklische Gruppe: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:17 So 11.11.2012
Autor: Pflaume007

Aufgabe
Sei n [mm] \in \IN [/mm] und G endlich und zyklisch der Ordnung n. Für jedes k [mm] \in \IN [/mm] sei [mm] \alpha_{k} [/mm] : G [mm] \to [/mm] G eine Abbildung, für alle g [mm] \in [/mm] G sei
[mm] g^{\alpha_{k}} [/mm] = [mm] g^{k}. [/mm] (Dabei ist wie üblich [mm] g^{k} [/mm] = g * g * ... * g.)
Zeigen Sie:
Aut(G) = [mm] {\alpha_{k} | k \in \IN, k \le n und k und n sind teilerfremd.} [/mm]

Ich weiß, dass ich 1. zeige, dass [mm] \alpha_{k} [/mm] alles Automorphismen sind. Die Homomorphieeigenschaft zu beweisen ist kein Problem, jedoch sehe ich den Sinn der Aussage k und n sind teilerfremd nicht wirklich. Vielleicht im Zusammenhang mit der Bijektivität? Hierbei habe ich mich schon an der Injektivität und der Surjektivität versucht, wobei aber die Aussage nicht aufgetreten ist.
2. muss ich anscheinend noch zeigen, dass Aut(G) nur aus den [mm] \alpha_{k} [/mm] mit geeigneten k besteht. Soll ich hierbei zeigen, dass Aut(G) [mm] \subseteq \alpha_{k} [/mm] und andersherum?

Ich bin dankbar für jede Hilfe :)

        
Bezug
Aut(G) für zyklische Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 21:58 Di 13.11.2012
Autor: felixf

Moin!

> Sei n [mm]\in \IN[/mm] und G endlich und zyklisch der Ordnung n.
> Für jedes k [mm]\in \IN[/mm] sei [mm]\alpha_{k}[/mm] : G [mm]\to[/mm] G eine
> Abbildung, für alle g [mm]\in[/mm] G sei
> [mm]g^{\alpha_{k}}[/mm] = [mm]g^{k}.[/mm] (Dabei ist wie üblich [mm]g^{k}[/mm] = g *
> g * ... * g.)
> Zeigen Sie:
>  Aut(G) = [mm]{\alpha_{k} | k \in \IN, k \le n und k und n sind teilerfremd.}[/mm]
>  
> Ich weiß, dass ich 1. zeige, dass [mm]\alpha_{k}[/mm] alles
> Automorphismen sind. Die Homomorphieeigenschaft zu beweisen
> ist kein Problem, jedoch sehe ich den Sinn der Aussage k
> und n sind teilerfremd nicht wirklich. Vielleicht im
> Zusammenhang mit der Bijektivität?

Ja. Der Homomorphismus [mm] $\alpha_k$ [/mm] ist genau dann bijektiv, wenn $k$ teilerfremd zu $n$ ist.

Da $G$ endlich ist, ist [mm] $\alpha_k$ [/mm] uebrigens genau dann surjektiv, wenn es injektiv ist. Das macht das ganze eventuell einfacher fuer dich.

> 2. muss ich anscheinend noch zeigen, dass Aut(G) nur aus
> den [mm]\alpha_{k}[/mm] mit geeigneten k besteht. Soll ich hierbei
> zeigen, dass Aut(G) [mm]\subseteq \alpha_{k}[/mm] und andersherum?

Vorsicht! Du meinst $Aut(G) [mm] \subseteq \{ \alpha_k \mid ... \}$. [/mm]

Und ja, das musst du tun. Ist aber nicht so schwer. Beachte, dass die Gruppe zyklisch ist. Dadurch ist das Bild eines Elementes unter einem Homomorphismus vollstaendig bestimmt durch das Bild eines (fest gewaehlten) Erzeugers.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]