matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieAxiom of Continuity
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Wahrscheinlichkeitstheorie" - Axiom of Continuity
Axiom of Continuity < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Axiom of Continuity: Countable Additivity
Status: (Frage) beantwortet Status 
Datum: 14:24 Sa 06.02.2010
Autor: FuguFish

Aufgabe
[mm]Let A_n, n \in N [/mm] be an infinite sequence of downwards nested sets [mm] (A_1\supseteq A_2\supseteq A_3\supseteq A_n)[/mm] with limit [mm] A_\infty\ =\cap_n \in\ N \ A_n[/mm].
Then [mm]A_n \lim[/mm] from the right =[mm] \emptyset=> P(A_n)->0[/mm].
Show that countable additivity implies continuity (the equation above).

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

So sieht's aus (ich hoffe, ich hab alles einigermaßen richtig eingetragen- habe nie vorher TeX benutzt).

Was wir da machen sollen, ist zum einen zeigen, dass, wie schon gesagt, countable additivity (zählbare Additivität? kann die deutschen Bezeichnungen nicht so gut :/) Kontinuität/Stetigkeit impliziert.

Wäre super, wenn mir jemand zumindest einen kleinen Ansatz geben würde :)

Grüße und danke im Voraus

Falls Unklarheiten herrschen sollten, einfach fragen

Fugu

        
Bezug
Axiom of Continuity: Antwort
Status: (Antwort) fertig Status 
Datum: 14:39 Sa 06.02.2010
Autor: SEcki


> [mm]Let A_n, n \in N[/mm] be an infinite sequence of downwards

Ist das [m]\IN[/m] hier, oder?

> nested sets [mm](A_1\supseteq A_2\supseteq A_3\supseteq A_n)[/mm]
> with limit [mm]A_\infty\ =\cap_n \in\ N \ A_n[/mm].

Heißt dies, dass der Schnitt ne Nullmenge ist?

>  Then [mm]A_n \lim[/mm]
> from the right =[mm] \emptyset=> P(A_n)->0[/mm].

Was soll "from the right" hier sein? Außerdem betrachtet ihr endliche Maße, oder?

> So sieht's aus (ich hoffe, ich hab alles einigermaßen
> richtig eingetragen- habe nie vorher TeX benutzt).

Für den ersten Versuch war das gut, wenn ich auch nicht alles kapier ;)

> Was wir da machen sollen, ist zum einen zeigen, dass, wie
> schon gesagt, countable additivity (zählbare Additivität?

[m]\sigma-[/m]Additivität.

> kann die deutschen Bezeichnungen nicht so gut :/)
> Kontinuität/Stetigkeit impliziert.
>  
> Wäre super, wenn mir jemand zumindest einen kleinen Ansatz
> geben würde :)

Teile [m]A_1[/m] auf in [m](A_1\setminus A_2)\cup (A_2\setminus A_3)\ldtos \cup (A_{n+1}\setminus A_n)[/m]. Stelle das als eine Summe dar.

SEcki

Bezug
                
Bezug
Axiom of Continuity: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:31 Sa 06.02.2010
Autor: FuguFish

Richtig, das N ist das N für natürliche Zahlen

limit from the right = Limes von rechts? ich habe echt keinen blassen Schimmer, wie das alles im Deutschen geschrieben wird.
oder auch Limes von oben? bzw. einseitiger Limes
Hier ein Link zu nem Bild, das wahrscheinlich mehr aussagt als meine Sätze :P
http://www.mathworks.com/access/helpdesk/help/toolbox/symbolic/left_right_lims.gif

zu den Teilmengen: es sollte eigentlich A1 A2 A3 ... An werden, aber irgendwie hab ich das nicht hingekriegt- also keine endliche Reihe, sondern eine Unendliche, da n->unendlich


[mm]A_\infty\ =\cap_n\ \in\ \IN\ A_n [/mm] kann auch als [mm]\[{A_n \downarrow \ A_\infty \][/mm] geschrieben werden.

Mit der Summe am Ende ist mir schon fast geholfen, wenn ich allerdings [mm] \ A_n [/mm] statt [mm] \ A_1 [/mm] habe, teile ich [mm] \ A_n [/mm] dann in unendlich viele Summen auf?

Grüße

Bezug
                        
Bezug
Axiom of Continuity: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:04 Sa 06.02.2010
Autor: SEcki


> Richtig, das N ist das N für natürliche Zahlen

Und das andere N?

> limit from the right = Limes von rechts? ich habe echt
> keinen blassen Schimmer, wie das alles im Deutschen
> geschrieben wird.

Dann sag mir, wie ihr es definiert habt. Das reicht mir - auch auf English. no problem.

> zu den Teilmengen: es sollte eigentlich A1 A2 A3 ... An
> werden, aber irgendwie hab ich das nicht hingekriegt- also
> keine endliche Reihe, sondern eine Unendliche, da
> n->unendlich

Ist mir klar.

> Mit der Summe am Ende ist mir schon fast geholfen, wenn ich
> allerdings [mm]\ A_n[/mm] statt [mm]\ A_1[/mm] habe, teile ich [mm]\ A_n[/mm] dann in
> unendlich viele Summen auf?

??? Du sollst die Summe für ein fixes, aber beliebiges n erstmal ausrechnen. Und dann [m]n\to\infty[/m] betrachten. Mir war klar, dass dies nicht die komplette Lösung ist, du wolltest ja nur nen Denkanstoß ...

SEcki

Bezug
                                
Bezug
Axiom of Continuity: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:35 Sa 06.02.2010
Autor: FuguFish

Unsere Definition:

Let I be an interval containing c and let f be a function, defined at all [mm]x \in\ \IR\[/mm], except perhaps c. We say that f has a limit from the right at c if there is an [mm]l\ \in\ \IR\[/mm] such that for any sequence [mm]\ x_n=1 \to \infty\[/mm] in I at the right-hand side of c and converging to c,

[mm]\lim_{n \downarrow \ c}f(x)=l[/mm]

Das ist die Definition für ein Limit von rechts, die wir benutzen.


Zu Letzterem, ich war mir nicht sicher, ob du mich richtig verstanden hattest, weil meine TeX Skills nun noch nicht sonderlich ausgereift sind und ich sehr gut nachvollziehen kann, wenn da einer nur Bahnhof versteht bzw. mich missversteht.

Alle N's sind "natürliche Zahlen N's", die kleinen n's sind selbsterklärend denke ich.

Trotzdem danke nochmals

Grüße

P.S.: Das [mm]=1\to\infty[/mm] bezieht sich natürlich auf das n.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]